146 research outputs found

    More on Descriptive Complexity of Second-Order HORN Logics

    Full text link
    This paper concerns Gradel's question asked in 1992: whether all problems which are in PTIME and closed under substructures are definable in second-order HORN logic SO-HORN. We introduce revisions of SO-HORN and DATALOG by adding first-order universal quantifiers over the second-order atoms in the bodies of HORN clauses and DATALOG rules. We show that both logics are as expressive as FO(LFP), the least fixed point logic. We also prove that FO(LFP) can not define all of the problems that are in PTIME and closed under substructures. As a corollary, we answer Gradel's question negatively

    Capturing the polynomial hierarchy by second-order revised Krom logic

    Full text link
    We study the expressive power and complexity of second-order revised Krom logic (SO-KROMr^{r}). On ordered finite structures, we show that its existential fragment Ξ£11\Sigma^1_1-KROMr^r equals Ξ£11\Sigma^1_1-KROM, and captures NL. On all finite structures, for kβ‰₯1k\geq 1, we show that Ξ£k1\Sigma^1_{k} equals Ξ£k+11\Sigma^1_{k+1}-KROMr^r if kk is even, and Ξ k1\Pi^1_{k} equals Ξ k+11\Pi^1_{k+1}-KROMr^r if kk is odd. The result gives an alternative logic to capture the polynomial hierarchy. We also introduce an extended version of second-order Krom logic (SO-EKROM). On ordered finite structures, we prove that SO-EKROM collapses to Ξ 21\Pi^{1}_{2}-EKROM and equals Ξ 11\Pi^1_1. Both of SO-EKROM and Ξ 21\Pi^{1}_{2}-EKROM capture co-NP on ordered finite structures

    Capturing the polynomial hierarchy by second-order revised Krom logic

    Get PDF
    We study the expressive power and complexity of second-order revised Krom logic (SO-KROMr^{r}). On ordered finite structures, we show that its existential fragment Ξ£11\Sigma^1_1-KROMr^r equals Ξ£11\Sigma^1_1-KROM, and captures NL. On all finite structures, for kβ‰₯1k\geq 1, we show that Ξ£k1\Sigma^1_{k} equals Ξ£k+11\Sigma^1_{k+1}-KROMr^r if kk is even, and Ξ k1\Pi^1_{k} equals Ξ k+11\Pi^1_{k+1}-KROMr^r if kk is odd. The result gives an alternative logic to capture the polynomial hierarchy. We also introduce an extended version of second-order Krom logic (SO-EKROM). On ordered finite structures, we prove that SO-EKROM collapses to Ξ 21\Pi^{1}_{2}-EKROM and equals Ξ 11\Pi^1_1. Both SO-EKROM and Ξ 21\Pi^{1}_{2}-EKROM capture co-NP on ordered finite structures

    A Generalized Packing Server for Scheduling Task Graphs on Multiple Resources

    Get PDF
    This paper presents the generalized packing server. It reduces the problem of scheduling tasks with precedence constraints on multiple processing units to the problem of scheduling independent tasks. The work generalizes our previous contribution made in the specific context of scheduling Map/Reduce workflows. The results apply to the generalized parallel task model, introduced in recent literature to denote tasks described by workflow graphs, where some subtasks may be executed in parallel subject to precedence constraints. Recent literature developed schedulability bounds for the generalized parallel tasks on multiprocessors. The generalized packing server, described in this paper, is a run-time mechanism that packs tasks into server budgets (in a manner that respects precedence constraints) allowing the budgets to be viewed as independent tasks by the underlying scheduler. Consequently, any schedulability results derived for the independent task model on multiprocessors become applicable to generalized parallel tasks. The catch is that the sum of capacities of server budgets exceeds by a certain ratio the sum of execution times of the original generalized parallel tasks. Hence, a scaling factor is derived that converts bounds for independent tasks into corresponding bounds for generalized parallel tasks. The factor applies to any work-conserving scheduling policy in both the global and partitioned multiprocessor scheduling models. We show that the new schedulability bounds obtained for the generalized parallel task model, using the aforementioned conversion, improve in several cases upon the best known bounds in current literature. Hence, the packing server is shown to improve the schedulability of generalized parallel tasks. Evaluation results confirm this observation.Ope

    Диагностика ΠΈ тСрапия Π°Π΄Π΅Π½ΠΎΠΌ Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π°

    Get PDF
    Pituitary adenomas are among the most common primary intracranial tumours. They are predominantly benign and account for 10–15 % of all intracranial neoplasms. These tumours are divided into two subgroups: macroadenomas (> 1 cm) and microadenomas (<1 cm). About 30% of pituitary adenomas do not produce hormones. In other cases tumours can produce any of the hormones of the anterior pituitary gland and thus cause endocrine disorders. Compression of the pituitary gland, adjacent cranial nerves and brain structures can lead to gland failure, cranial nerve deficit and other neurological disorders. Visual impairment, usually with bitemporal hemianopia, is one of the most common primary symptoms. Diagnosis of the disease requires an interdisciplinary approach. Transnasal transsphenoidal resection is indicated for all patients with symptomatic pituitary adenomas except prolactinomas. Prolactinomas respond very well to treatment with dopamine agonists. In cases of pituitary insufficiency a timely start of adequate hormone replacement therapy is important. Long-term follow-up is an integral part of the treatment concept. In this review we examine the current diagnostic criteria and treatment methods for various forms of pituitary adenomas.АдСномы Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнных ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ.ΠžΠ±Ρ‹Ρ‡Π½ΠΎ доброкачСствСнныС, Π½Π° ΠΈΡ… долю приходится 10–15 % всСх Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ. ΠŸΠΎΠ΄Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π½Π° 2 ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹: ΠΌΠ°ΠΊΡ€ΠΎΠ°Π΄Π΅Π½ΠΎΠΌΡ‹ (>1 см) ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ°Π΄Π΅Π½ΠΎΠΌΡ‹ (<1 см). Около 30 % Π°Π΄Π΅Π½ΠΎΠΌ Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π° Π½Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‚ Π³ΠΎΡ€ΠΌΠΎΠ½Ρ‹. Π’ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… случаях ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ всС Π³ΠΎΡ€ΠΌΠΎΠ½Ρ‹ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅ΠΉ Π΄ΠΎΠ»ΠΈ Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π° ΠΈ Ρ‚Π΅ΠΌ самым Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ эндокринныС заболСвания. Π‘ΠΆΠ°Ρ‚ΠΈΠ΅ Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π°, смСТных Ρ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… Π½Π΅Ρ€Π²ΠΎΠ² ΠΈ структур Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ нСдостаточности самой ΠΆΠ΅Π»Π΅Π·Ρ‹, нСдостаточности Ρ‡Π΅Ρ€Π΅ΠΏΠ½Ρ‹Ρ… Π½Π΅Ρ€Π²ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ нСврологичСским расстройствам. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ зрСния, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, с Π±ΠΈΡ‚Π΅ΠΌΠΏΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠΉ гСмианопсиСй, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнных ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… симптомов. Диагностика заболСвания Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ мСТдисциплинарного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°. Π—Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌ, Ρ‚Ρ€Π°Π½ΡΠ½Π°Π·Π°Π»ΡŒΠ½Π°Ρ Ρ‚Ρ€Π°Π½ΡΡΡ„Π΅Π½ΠΎΠΈΠ΄Π°Π»ΡŒΠ½Π°Ρ рСзСкция трСбуСтся ΠΏΡ€ΠΈ всСх симптоматичСских Π°Π΄Π΅Π½ΠΎΠΌΠ°Ρ… Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π°. ΠŸΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ‹ ΠΎΡ‡Π΅Π½ΡŒ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΠΎΠ΄Π΄Π°ΡŽΡ‚ΡΡ Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ агонистами Π΄ΠΎΡ„Π°ΠΌΠΈΠ½Π°. Π’ случаС нСдостаточности Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π° Π½Π°Ρ‡Π°Π»ΠΎ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ Π·Π°ΠΌΠ΅Π½Ρ‹ Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. ДолгосрочноС наблюдСниС являСтся Π½Π΅ΠΎΡ‚ΡŠΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΌΡ‹ рассмотрим диагностичСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ выявлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Π°Π΄Π΅Π½ΠΎΠΌ Π³ΠΈΠΏΠΎΡ„ΠΈΠ·Π° ΠΈ соврСмСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΡ… Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Mast Cells Modulate Acute Toxoplasmosis in Murine Models

    Get PDF
    The role of mast cells (MCs) in Toxoplasma gondii infection is poorly known. Kunming outbred mice were infected intraperitoneally with RH strain T. gondii, either treated with compound 48/80 (C48/80, MC activator) or disodium cromoglycate (DSCG, MC inhibitor). Compared with infected controls, infected mice treated with C48/80 exhibited significantly increased inflammation in the liver (P \u3c 0.01), spleen (P \u3c 0.05), and mesentery (P \u3c 0.05) tissues, higher parasite burden in the peritoneal lavage fluids (P \u3c 0.01), and increased levels of mRNA transcripts of T. gondii tachyzoite surface antigen 1 (SAG1) gene in the spleen and liver tissues (P \u3c 0.01), accompanied with significantly increased Th1 cytokine (IFN-Ξ³, IL-12p40, and TNF-Ξ±) (P \u3c 0.01) and decreased IL-10 (P \u3c 0.01) mRNA expressions in the liver, and increased IFN-Ξ³ (P \u3c 0.01) and IL-12p40 (P \u3c 0.01) but decreased TNF-Ξ± (P \u3c 0.01) and IL-4 (P \u3c 0.01) in the spleens of infected mice treated with C48/80 at day 9-10 p.i. Whereas mice treated with DSCG had significantly decreased tissue lesions (P \u3c 0.01), lower parasite burden in the peritoneal lavage fluids (P \u3c 0.01) and decreased SAG1 expressions in the spleen and liver tissues (P \u3c 0.01), accompanied with significantly increased IFN-Ξ³ (P \u3c 0.01) and IL-12p40 (P \u3c 0.05) in the liver, and decreased IFN-Ξ³ (P \u3c 0.05) and TNF-Ξ± (P \u3c 0.01) in the spleens; IL-4 and IL-10 expressions in both the spleen and liver were significantly increased (P \u3c 0.01) in the infected mice treated with DSCG. These findings suggest that mediators associated with the MC activation may play an important role in modulating acute inflammatory pathogenesis and parasite clearance during T. gondii infection in this strain of mice. Thus, MC activation/inhibition mechanisms are potential novel targets for the prevention and control of T. gondii infection

    Π­ΠΊΠ·ΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК ΠΊΠ°ΠΊ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ΠΈ тСрапСвтичСскиС мишСни ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅

    Get PDF
    Extensive study of extracellular vesicles began about ten years ago. Exosomes are extracellular membrane vesicles 30–100 nm in diameter secreted by various types of cells and present in most biological fluids. For a long time they were considered non-functional cellular components. However, it has been proven that they serve as a means of intercellular exchange of information. They can move bioactive molecules such as proteins, lipids, RNA, and DNA. Several studies have shown that their contents, including proteins and non-coding nucleic acids, may be of particular interest as biomarkers of diseases. The most promising of all these molecules are non-coding RNAs (ncRNAs), including microRNAs and long non-coding RNAs (lncRNAs). LncRNAs are a large group of non-coding RNAs (ncRNAs) longer than 200 nucleotides. As regulatory factors lncRNAs play an important role in complex cellular processes, such as apoptosis, growth, differentiation, proliferation, etc. Despite many advances in diagnosis and treatment (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public healthcare problems worldwide. Every day brings a better understanding of the role of exosomes in the development of cancer and metastases. Liquid biopsy has been developed as a method for the detection of cancer at an early stage. This is a series of minimally invasive tests of bodily fluids offering the advantage of real-time tracking of the tumour development. In fact, circulating exosomal lncRNAs have been found to be closely linked to processes of oncogenesis, metastasis and treatment. In this paper we review current studies into the functional role of exosomal lncRNAs in cancer and discuss their potential clinical use as diagnostic biomarkers and therapeutic targets for cancer.ΠžΠ±ΡˆΠΈΡ€Π½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π²Π΅Π·ΠΈΠΊΡƒΠ» Π½Π°Ρ‡Π°Π»ΠΎΡΡŒ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π΄Π΅ΡΡΡ‚ΡŒ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄. Экзосомы β€” это Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ Π²Π΅Π·ΠΈΠΊΡƒΠ»Ρ‹ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 30–100 Π½ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ΅ΠΊΡ€Π΅Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ биологичСских ТидкостСй. Π”ΠΎΠ»Π³ΠΎΠ΅ врСмя ΡΡ‡ΠΈΡ‚Π°Π»ΠΈΡΡŒ Π½Π΅Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ, Π° Π½Π° сСгодняшний дСнь ΡƒΠΆΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ срСдством ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ. Они ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ Π±ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π±Π΅Π»ΠΊΠΈ, Π»ΠΈΠΏΠΈΠ΄Ρ‹, РНК ΠΈ Π”ΠΠš. НСсколько исслСдований ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΈΡ… содСрТимоС, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π±Π΅Π»ΠΊΠΈ ΠΈ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Π΅ кислоты, ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ особый интСрСс Π² качСствС Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Из этих ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК (нкРНК), Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΌΠΈΠΊΡ€ΠΎΠ ΠΠš ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ РНК (lncRNA). LncRNAs ΡΠ²Π»ΡΡŽΡ‚ΡΡ большой Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π½Π΅ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… РНК (ncRNAs) Π΄Π»ΠΈΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ 200 Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². LncRNAs ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ рСгуляции ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² слоТных ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссах, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·, рост, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ°, пролифСрация ΠΈ Ρ‚. Π΄. НСсмотря Π½Π° ΠΌΠ½ΠΎΠ³ΠΈΠ΅ достиТСния Π² области диагностики ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (хирургия, лучСвая тСрапия, химиотСрапия), Ρ€Π°ΠΊ ΠΏΠΎ-ΠΏΡ€Π΅ΠΆΠ½Π΅ΠΌΡƒ остаСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ общСствСнного здравоохранСния Π²ΠΎ всСм ΠΌΠΈΡ€Π΅. Π‘ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π΄Π½Π΅ΠΌ всС Π»ΡƒΡ‡ΡˆΠ΅ описываСтся Ρ€ΠΎΠ»ΡŒ экзосом Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Ρ€Π°ΠΊΠ° ΠΈ мСтастазировании. Жидкостная биопсия Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° для выявлСния Ρ€Π°ΠΊΠ° Π½Π° Ρ€Π°Π½Π½Π΅ΠΉ стадии Π½Π° основС минимально ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… ΠΈ сСрийных исслСдований Тидкости ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° с прСимущСством отслСТивания развития ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ЀактичСски Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ lncRNAs Π² экзосомах, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ тСсно связаны с ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ, мСтастазированиСм ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ. Π’ этом ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ ΠΌΡ‹ прСдставляСм ΠΎΠ±Π·ΠΎΡ€ Ρ‚Π΅ΠΊΡƒΡ‰ΠΈΡ… исслСдований Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Ρ€ΠΎΠ»ΠΈ ΡΠΊΠ·ΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… lncRNAs ΠΏΡ€ΠΈ Ρ€Π°ΠΊΠ΅ ΠΈ обсуТдаСм ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ клиничСскоС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² качСствС диагностичСских Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈ тСрапСвтичСских мишСнСй для Ρ€Π°ΠΊΠ°
    • …
    corecore