
A Generalized Packing Server for Scheduling Task Graphs on Multiple Resources
Shen Li ∗, Xiaoxiao Wang ∗, Shaohan Hu ∗, Yiran Zhao ∗, Shiguang Wang ∗, Lu Su †, Tarek Abdelzaher ∗

∗University of Illinois at Urbana-Champaign, †State University of New York at Buffalo
{shenli3, xwang104, shu17, zhao97, swang83, zaher}@illinois.edu, lusu@buffalo.edu

Abstract—This paper presents the generalized packing
server. It reduces the problem of scheduling tasks with
precedence constraints on multiple processing units to the
problem of scheduling independent tasks. The work generalizes
our previous contribution made in the specific context of
scheduling Map/Reduce workflows. The results apply to the
generalized parallel task model, introduced in recent literature
to denote tasks described by workflow graphs, where some
subtasks may be executed in parallel subject to precedence
constraints. Recent literature developed schedulability bounds
for the generalized parallel tasks on multiprocessors. The
generalized packing server, described in this paper, is a run-
time mechanism that packs tasks into server budgets (in a
manner that respects precedence constraints) allowing the
budgets to be viewed as independent tasks by the underlying
scheduler. Consequently, any schedulability results derived
for the independent task model on multiprocessors become
applicable to generalized parallel tasks. The catch is that the
sum of capacities of server budgets exceeds by a certain
ratio the sum of execution times of the original generalized
parallel tasks. Hence, a scaling factor is derived that converts
bounds for independent tasks into corresponding bounds for
generalized parallel tasks. The factor applies to any work-
conserving scheduling policy in both the global and partitioned
multiprocessor scheduling models. We show that the new
schedulability bounds obtained for the generalized parallel
task model, using the aforementioned conversion, improve
in several cases upon the best known bounds in current
literature. Hence, the packing server is shown to improve the
schedulability of generalized parallel tasks. Evaluation results
confirm this observation.

I. INTRODUCTION

This paper introduces the generalized packing server,
which allows converting generalized parallel tasks into a
corresponding set of independent tasks for the underlying
scheduler. Hence, any schedulability results, previously de-
rived for independent tasks on multiprocessors become ap-
plicable to analyze the schedulability of generalized parallel
tasks.

The generalized parallel task model was studied exten-
sively in recent literature [1–8]. It refers to tasks that
are described by workflow graphs, where some subtasks
can execute in parallel subject to precedence constraints.
The new server packs computation time of these tasks
into budgets, while respecting precedence constraints. The
resulting budgets, however, can be treated by the underlying
scheduler as independent tasks. To ensure that the packing
server can always successfully pack the original task set into
budgets, we show that the sum of the budgets should be
larger by a certain factor than the sum of the original com-
putation times. As a result, a conversion factor is derived

between schedulability bounds derived in prior literature
for independent tasks on multiprocessors (that therefore
apply to the budgets) and the corresponding bounds that
apply to the schedulability of generalized parallel tasks. The
new bounds derived using the aforementioned conversion
approach for the generalized parallel tasks are shown to
be better in many cases than the corresponding best-known
bounds for this task model.

The paper extends our previous work [9] that specifically
addresses the scheduling problem in the context Map/Re-
duce systems. The previous approach required that the
packing server simulate the exact future task execution
timeline by the underlying scheduler, in order to determine
the exact time intervals when one of the budgets will
be scheduled on one of the resources in the future. This
need for simulation made the previous approach of limited
applicability. In particular, it applied well to Map/Reduce
scheduling, where schedulers are heavy-weight application-
layer entities burdened by layers of cloud middleware
(making the added overhead of the aforementioned sim-
ulation negligible). However, in the context of embedded
computing, schedulers must be lighweight and efficient.
The generalized packing server, described in this paper, no
longer requires simulation. Instead, it can use any work-
conserving scheduling policy to pack tasks into server
budgets. Hence, results derived for this server are much
more broadly applicable.

The rest of this paper is organized as follows. Sec-
tion II presents the model of generalized parallel tasks,
and introduces the high-level idea of generalized packing
servers. Then, technical details and theoretical guarantees
are elaborated in Section III. Section IV shows evaluation
results. We survey related work in Section V. Finally,
Section VI summarizes the paper.

II. OVERVIEW

We first review the task model considered in this paper,
in Section II-A. We then present, in Section II-B, our
main result and explain the high-level intuition behind the
generalized packing server. A detailed proof will follow in
subsequent sections.

A. Generalized Parallel Task Model

The paper schedules generalized parallel tasks on mul-
tiprocessors composed of a number of identical processing
elements (or cores). A job (i.e., an instance of occurrence) of
a generalized parallel task is composed of multiple segments
that together form a Directed Acyclic Graph (DAG), where

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158311374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


nodes represent segments and edges represent precedence
constraints. Each segment may be composed of mutiple
parallel threads. No segment can start until all threads of
all its predecessor segments are finished.

The generalized parallel task model extends a previ-
ous parallel task model described in literature, where a
job consists of multiple segments, chained together into
a pipeline. Each segment may contain multiple parallel
threads. Precedence constraints ensure that no segments
can start before all threads of its predecessor segments are
finished.

More formally, in this paper, we consider a set of n
generalized parallel tasks, denoted by τ = {τ1, τ2, ..., τn},
running on a platform of m cores. Each task τi contains a
DAG of si segments, where the jth segment consists of mj

i

threads, each with the worst case execution time (WCET)
cji . Different threads in the same segment may execute on
different cores in parallel. A thread can be preempted, and
then resumed on the same or a different core. The jth

segment can only start after all its predecessor segments
on the DAG have finished. Every Ti time units, the task τi
spawns a generalized parallel job with relative deadline Di.
Jobs from the same task are considered independent. The
utilization ui of task τi is the total amount of computation

over its deadline (i.e.,
∑

j m
j
ic

j
i

Di
).

Let Li denote the critical path length of task τi. Note
that, in a parallel job, where segments form a pipeline, Li =∑
j c
j
i , summed over all segments. In a generalized parallel

job, the critical path is the longest execution path in the
DAG. Hence, Li = maxpathk∈DAG

∑
j∈pathk

cji . We define
the stretch of a generalized parallel task, τi, denoted by ϕi,
as the ratio of its relative deadline Di over its critical path
length Li. Let ϕ denote the minimum stretch of all tasks
(i.e., ϕ = min{ϕi|∀i}). Define β as a tunable parameter
that controls the upper bound of the maximum individual
task utilization umax in converted independent tasks, such
that umax ≤ 1

β .
For simplicity, we use the term parallel tasks interchange-

ably with pipelines, and use the term generalized parallel
tasks interchangeably with (DAG) workflows.

B. The Generalized Packing Server

To understand the intuition behind the generalized pack-
ing server, it is good to remember the literature on schedul-
ing of aperiodic tasks. Since aperiodic tasks were harder
to analyze, due to the intrinsic uncertainly regarding the
time duration between two consecutive job releases, real-
time scheduling literature introduced the idea of aperiodic
task servers [10–12], such that aperiodic tasks can be
scheduled inside these servers, while the servers themselves
can be invoked periodically. Hence, scheduling and analysis
techniques for periodic tasks could be extended to mixtures
of periodic and aperiodic tasks.

Packing Server n
App-Level 
Scheduler

Packing Server 2
App-Level 
Scheduler

Packing Server 1

Underlying Independent Task Scheduler (e.g., GEDF)

Sc
h

ed
u

lin
g 

Si
gn

al
s

Sc
h

ed
u

lin
g 

Si
gn

al
s

Sc
h

ed
u

lin
g 

Si
gn

al
s

. . .

. . .

. . .

τ1 τ2 τn

b
u

d
ge

ts

b
u

d
ge

ts

b
u

d
ge

ts

τ1 τ2 τn

App-Level 
Scheduler

Figure 1: Packing Server Overview

The generalized packing server shares the same moti-
vation and high-level approach with the above literature.
Recent work has introduced the generalized parallel task
model, drawing an increasing amount of attention to its
expressiveness and broad applications [4–7]. Generalized
parallel tasks are more difficult to schedule and analyze than
independent tasks, due to the existence of precedence con-
straints. Can one design servers that offer parallel budgets,
such that generalized parallel tasks can be scheduled inside
those budgets, whereas the budgets themselves apprear as
independent tasks to the underlying scheduler? This paper
answers the aforementioned question in the affirmative.
Moreover, it shows that the server guarantees that all
generalized parallel tasks meet their deadlines as long as
the independent budgets do.

In our paper, each generalized parallel task is given its
own generalized packing server given by a set of budgets.
We show that if these budgets are appropriately sized
(to be slightly larger, in total, than the sum of execution
times of the threads in the task in question), then a work-
conserving scheduling policy will always succeed at fitting
all threads of a task within the server budgets, while
respecting precedence constraints, regardless of how these
budgets are scheduled by the underlying multiprocessor
scheduler. Hence, the underlying scheduler can treat these
budgets as independent and simply ensure that the indepe-
nent budgets meet the overall deadline of the task. This is
the standard scheduling problem for independent tasks on
multiprocessors. As a result, we can schedule (and analyze
schedulability of) generalized parallel tasks through packing
servers using existing techniques for independent tasks.

The conversion from the generalized parallel task model
to independent tasks (budgets) introduces a penalty, since
the sum of budgets must be larger than the computational
demand of the original tasks. We quantify this penalty as the
ratio between the total utilization of the original precedence-
constrained task set and the resulting set of independent
tasks (or, rather, budgets). We show that this ratio is equal to



ϕ−β
ϕ , where β and ϕ are as defined in Section II-A. Hence,

if the utilization bound for scheduling of independent tasks
by the underlying multiprocessor scheduling policy, is UB ,
then the generalized parallel task set is schedulable when
its utilization does not exceed UB · ϕ−βϕ . The observation
allows us to map bounds for independent tasks to those
for generalized parallel tasks, essentially discovering new
schedulability bounds for the latter in several cases.

Figure 1 illustrates the high-level idea of the general-
ized packing server. The underlying scheduler runs some
independent task scheduling algorithm, such as Global EDF
(GEDF) [13] or EDF First Fit (EDF-FF) [14]. When the
underlying scheduler executes a budget, much like the case
with aperiodic task servers, the application-level scheduler
of the corresponding packing server executes threads of the
original workflow task within that budget using a simple
work-conserving scheduling policy. The policy respects
precedence constraints by assigning threads whose prede-
cessors are finished (in some priority order) to the cores.
This scheduler always succeeds at fitting all threads into
the budgets, as long as the budgets are sized as described
in this paper.

III. GENERALIZED PACKING SERVER

In this section, we first present generalized packing
servers for pipelines, and then, extend it for workflows by
transforming workflows into pipelines.

A pipeline can be converted into a set of identical and
independent tasks using two key operations, packing and
inflating. Section III-A describes the packing operation
that converts a pipeline into identical budgets. Then, Sec-
tion III-B introduces the inflating operation that decouples
budgets into independent tasks. Based on the packing and
inflating operations, we develop the conversion bound ϕ−β

ϕ ,
where β is a tunable parameter that controls the upper
bound of the converted independent task utilization, such
that umax ≤ 1

β . The analysis also shows that all work-
conserving application-level schedulers can achieve this
conversion bound. In Section III-C, we further prove that
no application-level scheduler can improve this conversion
bound. Finally, we describe how workflows can be trans-
formed into pipelines preserving the same conversion bound
in Section III-D.

A. The Packing Operation

The packing operation packs a pipeline τi into a
given number (xi) of identical budgets, such that xi ≤
max{mj

i |∀j}. In the next section, we will describe how
to determine the value of xi.

The intuition is that, as packing servers execute threads
in budgets, using a smaller number of budgets reduces the
parallelism during the execution of a pipeline, which helps
avoid unnecessary resource contentions. After packing τi
into xi budgets, if mj

i ≥ xi, segment j is called a large

Notation Description
τi pipeline i
Di deadline of τi
Li critical path length of τi
ui utilization of τi
ui total utilization of budgets converted from τi
ϕi Di over critical path length of τi (stretch)
β reverse of max individual budget utilization
mj

i # of threads in segment j of τi
cji length of thread in segment j of τi
D′

i Di over β
m̂i budget concurrency
ci budget size after packing
cji budget portion size of segment j after packing
ĉi budget size after inflating
ĉji budget portion size of segment j after inflating

segment. Otherwise, it is a small segment. The packing
operation concentrates the total WCET of each large seg-
ment into xi identical budget portions, and adds (xi −mj

i )
virtual budget portions to each small segment, where budget
portions denote the portions of budgets allocated to a
specific segment. After that, every segment consists of an
equal number (xi) of (virtual) budget portions. The packing
server then concatenates each (virtual) budget portion with
another (virtual) budget portion in the successor segment,
resulting in xi identical budgets. Denote, cji as the size of
identical budget portions allocated to segment i, which can
be computed as:

cji =
max

{
xi,m

j
i

}
· cji

xi
. (1)

Figure 2 (a)-(b) show an example. Solid blue rectangles
represent threads, and black rectangle frames represent
budgets. The entire input pipeline packs into xi = 4 budgets.
The first segment is a small segment as m1

1 = 3 < 4,
and the second segment is large segment as m2

1 = 5 > 4.
A virtual budget portion of size 6 is introduced into the
first segment to make all budgets identical. The second
segment packs into a 4 budget portions each with size
c21 = max{4,5}×8

4 = 10;
Worst-Case Budget Schedule Analysis

Even though all budgets converted from the same pipeline
are identical as they share the same size and deadline, they
cannot be trivially considered as independent if the packing
server only enforces the application-level scheduler to be
work-conserving. Because, the packing operation alone can-
not guarantee that a segment can fit into its corresponding
budget portion schedules. For example, Figure 3 depicts a
valid schedule of the pipeline and budgets shown in Figure 2
(a) and (b). The black frames represent the budget schedule
of the first segment, and the grey frames the budget schedule
of the second segment. In this example, we focus on the first
segment (the small segment), omitting irrelevant threads.
During the execution, the parallelism of budget schedule
equals 1 in the first 6 time units, which allows the first
thread to finish. Then, all remaining budgets of the segment



(b) After Packing

6 6 3

deadline=28

6 8 10

small segment large segment

(a) Input Pipeline

10 6

small segment large segment

(c) After Inflating

Thread Budget

Figure 2: A Packing Server Example

tP1

P2

P3

P4

First segment 
budget schedules

Second segment 
budget schedules

6 4.5 65.5

co
re

s

thread

Figure 3: Valid Budget Schedules

schedule to four cores in the next 4.5 time units. As a result,
the second and the third threads cannot completely fit into
the budget portion schedules.

Using PFair-like [15, 16] policies or simulations [9] in
the application-level scheduler can help to fit segments into
budget schedules, but the overhead induced by exorbitant
preemptions and simulations are luxuries that many systems
cannot afford. In order to get rid of excessive preemptions
and simulations, we propose to further enlarge budgets
after the packing operation to guarantee schedulability. As
enlarging budget size introduces a larger amount of virtual
budget, which negatively impacts the conversion bound, it is
desired to keep the budget enlargement as small as possible.

The minimum enlargement depends on budget schedules.
For example, if all budgets execute sequentially in the
underlying scheduler, the packing server no longer needs
to introduce any enlargement, as the threads can run one by
one in budget schedules. In another example as elucidated in
Figure 3, each budget needs to be enlarged by at least 1.5
time units. In order to guarantee schedulability, we have
to analyze the worst-case budget schedules that force the
packing server to introduce the maximum amount of virtual
budget.

To understand the worst-case schedule, define Iji as the
maximum amount 1 of idle budget in the worst-case, where
a portion of a budget is considered idle if there is no threads
running in it. Then, we prove Lemma 1.

Lemma 1. Let Iji denote the maximum amount of idle
budget in any schedule of segment j in pipeline i. For
any work-conserving algorithm, enlarging each budget by
Iji −

(
xic

j
i −m

j
i c
j
i

)
guarantees that all threads of the

segment can fit into any budget schedule.

Proof: After the packing operation, the amount of

1We use the amount of budget to refer to the total length of budgets in
a schedule, which is different from the number of budgets that represents
the number of individual budget in the schedule.

budget allocated to segment j of pipeline i is xic
j
i . Enlarging

it by Iji −
(
xic

j
i −m

j
i c
j
i

)
results in Iji +mj

i c
j
i amount of

budget. As Iji denotes the maximum amount of idle budget,
it follows that at least

(
Iji +mj

i c
j
i

)
− Iji = mj

i c
j
i amount

of budget is occupied by thread executions. Because the
segment has mj

i c
j
i thread execution requirement in total, it

is guaranteed that all threads in the segment can fit into the
budget schedule.

According to Lemma 1, the minimum budget enlargement
can be calculated by deriving the maximum amount of idle
budget. The worst-case budget schedule is the one that
forces the maximum amount of idle budget. We consider
an adversary that manipulates the budget schedule to force
a work-conserving algorithm to leave the maximum amount
of budget running idle. We allow the adversary to introduce
an unlimited amount of budget into the segment execution
time interval. The only constraint is that the parallelism of
the budget schedule has to subject to the maximum budget
concurrency xi.

Lemma 2. In the budget schedule derived using any work-
conserving algorithm, the maximum amount of idle budget
of segment j in pipeline i is upper bounded by (xi− 1)cji .

Proof: Let y denote the number of unfinished threads.
As for a work-conserving scheduler, there will be no idle
budget when y ≥ xi.

When y < xi, at most (xi − y) budgets could run idle.
Therefore, the total amount of idle budget accumulates at a
speed no faster than (xi − y), which is upper bounded by
(xi − 1).

We define a time interval as idle if there is at least one
budget running idle in all time instances throughout the
interval. The idle budget in different time instances does
not have to be the same one. According to the property
of work-conserving scheduling algorithms, it must be the
case that all y remaining threads are executing in idle time
intervals. Therefore, the total length of idle time intervals is
upper bounded by cji . Otherwise, there must be some thread
in the segment whose thread length is larger than cji , which
contradicts the definition of a pipeline segment.

In summary, the amount of idle budget can accumulate at
the maximum speed of (xi − 1) with the maximum duration
of cji , resulting in at most (xi − 1) cji amounts of idle
budget.



tP1

P2

P3

budget thread

Figure 4: Budget Schedule Examples

The example depicted in Figure 4 shows a segment
execution example where there is (xi−1)cji amount of idle
budget. Hence, the bound proven in Lemma 2 is tight.

B. The Inflating Operation

After the packing operation converts a pipeline into
identical budgets, the inflating operation further decouples
the budgets into independent sequential tasks by enlarging
budgets a certain amount such that all threads can fit into
the worst-case budget schedule. According to Lemma 2,
the packing server guarantees schedulability if the amount
of budget allocated to segment j of pipeline i is (xi− 1)cji
larger than the total WCET of the segment. As the packing
operation has already introduced

(
max{mj

i , xi} −m
j
i

)
cji

extra amount of budget, the minimum sufficient budget
enlargement for segment j is:

(xi − 1)cji −
(
max{mj

i , xi} −m
j
i

)
cji

xi
. (2)

Hence, after the inflating each segment by the amount
shown in Equation (2), the pipeline is guaranteed to fit
into its budget schedules. Consequently, the budgets can
be treated as independent by the underlying scheduler, and
the schedulability of those budgets immediately implies the
schedulability of the original task graphs. Therefore, by
developing the lower bound (the conversion bound) of total
task graph utilization (

∑
i ui) over total independent task

utilization (
∑
i ui), packing servers can bridge independent

task utilization bounds to generalized parallel tasks.
As the total amount of virtual budget is

∑
j(xi−1)c

j
i after

applying the packing and inflating operations, it is desired
to use the minimum xi to reduce of the total utilization
of converted independent tasks. The constraint is that the
result budget size has to be smaller than the deadline Di.
The budget size after the inflating operation is:

ĉi =

∑
jm

j
i c
j
i + (xi − 1)

∑
j c
j
i

xi

=
1

xi

∑
j

(
mj
i − 1

)
cji +

∑
j

cji , (3)

Equation (3) helps the packing operation determine the
value of xi for τi. According to Equation (3), the budget
size ĉi decreases monotonically with the increase of budget
concurrency xi. Hence, we can find the minimum possible
concurrency xi = m̂i that satisfies the deadline D′i =

Di

β
using binary search. With techniques to determine both the
concurrency m̂i and size ĉi of budgets, we can now prove
the utilization bound for generalized packing servers.

Theorem 1. If an independent task scheduler A achieves a
utilization bound of UB , the generalized packing server over
A as the underlying scheduler guarantees that UB · ϕ−βϕ is
a valid utilization bound for generalized parallel tasks.

Proof: Based on the definition of m̂i, we have that
using one less concurrency (m̂i − 1) violates deadline:

∑
j

mj
i c
j
i + (m̂i − 1)cji
m̂i − 1

=
∑
j

mj
i c
j
i

m̂i − 1
+
∑
j

cji ≥ D
′
i (4)

According the definition of D′i, we have:∑
j

mj
i c
j
i

m̂i − 1
≥ D′i −

∑
j

cji = (
ϕi
β
− 1)

∑
j

cji (5)

Then, we can represent the lower bound of the total execu-
tion time of the original pipeline as:∑

j

mj
i c
j
i ≥ (m̂i − 1)(

ϕi
β
− 1)

∑
j

cji (6)

As the amount of virtual budget in each segment is upper
bounded by (m̂i − 1) cji , we can compute the upper bound
ratio of virtual budget over original task graph total WCET

ui − ui
ui

=

∑
j (m̂i − 1) cji∑

jm
j
i c
j
i

≤
(m̂i − 1)

∑
j c
j
i

(ϕi

β − 1)
∑
j c
j
i (m̂i − 1)

Inequality (6)

=
β

ϕi − β
(7)

Finally we have:∑
i

ui ≥
ϕ− β
ϕ

∑
i

ui, ϕ = min{ϕi|∀i} (8)

This conversion bound matches the one derived in litera-
ture [9]. However, compared to literature [9], we completely
remove the requirement of simulations in the underlying
scheduler, promoting the packing server technique to a
broader spectrum of applications.

Figure 2 depicts an example of packing and inflating
a pipeline. The input pipeline i contains two segments,
where the first segment consists of m1

i = 3 threads
with length c1i = 6, and the second segment consists of
m2
i = 5 threads with length c2i = 8. The deadline Di is

28. According to Equation (3), we can calculate that the
minimum budget concurrency without violating the deadline
to be m̂i = 4. Therefore, after conducting the packing
operation, c1i = c1i = 6, as m1

i < m̂i. The five threads of
the second segment concentrate into four, each with length
c2i = 5×8

4 = 10. Now, we calculate the amount
(
ĉji − c

j
i

)
that budgets should enlarge for each segment j.



Li-ɛ ɛ

(a) Input Pipeline

...

(b) After Packing

Li-ɛ Di’-Li+ɛ 

Figure 5: Bound Tightness

• For the first segment:

ĉ1i − c1i =
m1
i c

1
i + (m̂i − 1) c1i

m̂i
− c1i

=
3× 6 + (4− 1)× 6

4
− 6 = 9− 6 = 3.

• For the second segment:

ĉ2i − c2i =
m2
i c

2
i + (m̂i − 1) c2i

m̂i
− c2i

=
5× 8 + (4− 1)× 8

4
− 10 = 16− 10 = 6.

A merit of the technique is that the application-level sched-
uler can be very simple and efficient. As it is guaran-
teed that segments can fit into any budget schedule, the
application-level scheduler can schedule an arbitrary thread
when a budget starts execution. One can imagine a simple
implementation that all threads of the current segment are
organized into a queue. The application-level scheduler
picks and runs the head thread from the queue when a
budget executes, and preempts and appends the thread to
the end of the queue when that budget gets preempted by
the underlying scheduler.

C. Bound Tightness
As described above, the conversion bound ϕ−β

ϕ applies
to all work-conserving application-level schedulers. One
natural question to ask is whether the conversion bound
is tight. For example, when proving the conversion bound,
we do not make use of proactive preemptions at all, where
Proactive Preemption is the thread preemption issued by the
application-level scheduler when the corresponding budget
is not preempted by the underlying scheduler. Hence, it
is meaningful to know whether the conversion bound can
be further improved if the application-level scheduler is
allowed to proactively preempt thread executions following
some judicious algorithms.

Intuitively, proactive preemptions may help reduce the
amount of budget enlargement. For example, by enforcing
a PFair-like scheduling policy in the application-level sched-
uler, packing servers no longer need the inflating operation
to enlarge budgets. However, it turns out that the bound
is still tight even if the application-level scheduler uses
unlimited proactive preemptions.

Consider a pipeline of two segments as depicted in
Figure 5 (a). The first segment contains a single thread of

length c1i . The second segment consists of (D′
i−c

1
i )x

ε threads
of length ε. After packing the pipeline into x budgets, we
compute:

ui − ui
ui

=
(x− 1)c1i

(D′i − c1i )x+ c1i

≈ (x− 1)Li(
ϕi

β − 1
)
Lix+ Li

as Li = c1i + ε ≈ c1i

≈ β

ϕi − β
when x is large (9)

This example shows that the packing operation alone may
introduce ui · β

ϕ−β amount of virtual budget. Hence, the
bound shown in (8) is the optimal conversion bound no
matter what algorithm is used to fit threads into budget
schedules.

D. Transforming Workflows into Pipelines

This section further generalizes the same conversion
bound ϕ−β

ϕ to workflows by transforming a workflow into
a pipeline. Our goal is to develop a strategy that leads
to the highest conversion bound. As shown in previous
sections, the conversion bound is ϕ−β

ϕ , which improves
with the decrease of the pipeline critical path length, as
ϕ = min{Di

Li
|∀i}. This inspires us to use a transformation

algorithm that minimizes the critical path length in the
transformed pipeline. The pipeline length is lower bounded
by the critical path length Li of the input workflow. There-
fore, conversion bound is maximized if the transformation
algorithm successfully curbs the pipeline critical path length
at Li.

The workflow transformation algorithm developed in lit-
erature [9] can help to achieve this objective. The algorithm
uses a virtual time axis, and allows each segment in the
workflow to start execution at the earliest possible time. To
keep the result as a valid pipeline, a synchronization time
point is inserted at the end of each workflow segment, which
may potentially break threads of some other segments into
parts. Figure 6 shows an example. The original workflow
is depicted in (a) and the resulting pipeline is shown in
(b). As segments are of different lengths, a segment in the
original workflow may break into multiple segments in the
pipeline. A pipeline segment may consist of parts from mul-
tiple workflow segments. For example, workflow segment 2
and segment 5 both follow segment 1. Hence, these two
segments may start at the same time. However, as segment
5 finishes sooner than segment 2, its synchronization time
point breaks segment 2 into two pipeline segments.

This algorithm transforms a workflow task set into a
pipeline task set without increasing its utilization, and at
the same time preserves the same critical path length Li.
Therefore, the same utilization bound UB · ϕ−βϕ also applies
to workflows.

IV. EVALUATION

In the evaluation section, we compare six scheduling
algorithms:



m5=2
c5 = 5

m2=1
c2 = 7

m1=2
c1 = 5

m3=4
c3 = 3

m4=3
c4 = 3

m6=2
c6 =2

1 2 3 4 6

5 t

0 5 10 15 20

(a) (b)

Thread Synchronization
Point

Corresponding
Workflow Segment

1

1

1

1 1

1

1

1 1

1

1

1

Figure 6: An example of transforming a workflow into a pipeline

• Packing/GEDF: The generalized packing server over
GEDF as the underlying scheduler.

• Packing/EDF-FF: The generalized packing server
over EDF First Fit (EDF-FF) [14] as the underlying
scheduler.

• Sim/GEDF: The simulation-based packing server over
GEDF as the underlying scheduler. The simulation-
based packing server, first proposed in [9] for Map/Re-
duce applications, shares a similar structure as the
generalized packing server, except that it requires the
underlying scheduler to simulate budget executions up
to Dmax time units ahead, where Dmax is the largest
deadline of all workflows.

• Sim/EDF-FF: The simulation-based packing server
over EDF First Fit (EDF-FF) [14] as the underlying
scheduler.

• GEDF: Global EDF is a well-known and widely used
scheduler. It assigns the highest priority to the work-
flow with the earliest absolute deadline. Its best-known
utilization bound is 2

3+
√
5
≈ 38.2% [7].

• Federated: Federated scheduling is the state-of-the-
art generalized parallel task scheduling algorithm [7].
It achieves the highest-known utilization bound of
50% for generalized parallel tasks, when the stretch
ϕ surpasses 2. The algorithm partitions tasks based on
their utilizations. For every task τi with utilization at
least one (i.e., ui ≥ 1), the algorithm allocates dCi−Li

Di−Li
e

dedicated cores to τi, where Ci =
∑
jm

j
i c
j
i . All other

lower-utilization tasks share the remaining cores.
The simulations emulate 50 cores. In all figures, the

shown utilization is divided by the number of cores in the
system to normalize it to a per-core value.

The DAG generation program generates DAGs using
parameters that include the degree of parallelism of each
segment, the number of hops on the critical path, the
segment length, the number of segments in each DAG, and
the tightness of deadline. Detailed DAG generation policies
will be described close to corresponding experiments.

A large family of DAGs are generated first for each exper-
iment. When load is increased on the horizontal axis, more
DAGs are drawn from the set. If there are unfinished threads
when a DAG reaches its deadline, all remaining threads
are preempted and discarded, and the simulation records
the deadline-violation event. The experiments enforce no

admission controls.

A. Computing the Optimal Budget Size

We begin by computing the optimal packing server budget
size (or equivalently, the optimal value of β). Generalized
packing servers may use any work-conserving indepen-
dent task scheduling policy in the underlying scheduler to
achieve a utilization bound of UB · ϕ−βϕ for generalized
parallel tasks, where UB is the utilization bound of the
underlying independent task scheduler. The value of β
affects the utilization bound in two competing directions: 1)
The underlying scheduling algorithms usually favor smaller
individual task utilization, and hence larger β; 2) The
conversion bound prefers smaller β. Therefore, it is desired
to find an optimal β that balances the two. For GEDF the
optimal β maximizes:

UB ·
ϕ− β
ϕ

=
(ϕ− β)(mβ −m+ 1)

mϕβ
. (10)

By taking derivatives with respect to β, and setting the
derivative to 0, the highest utilization bound for the packing
server over GEDF is achieved at:

β =

√
ϕ(m− 1)

m
. (11)

Similarly, one can show that the highest utilization bound
for the packing server over EDF-FF is achieved at:

β =

√
(ϕ+ 1)(m− 1)

m
− 1. (12)

The following experiments use the optimal β values to
configure the packing server according to the underlying
scheduling policy, unless otherwise stated.

B. Effect of ϕ

This section evaluates how the key parameter ϕ in the
conversion bound affects the performance of the general-
ized packing servers. During the DAG generation process,
the program first generates a random topology. Then, the
deadline of the DAG is set to the product of its critical
path length Li and the given stretch ϕ (i.e., Di = Li · ϕ).
In this case, varying the parameter ϕ also affects the task
utilization, which we shall show later in Section IV-D is an
important parameter for the Federated scheduling policy.
Tuning two key parameters in the same experiment would
cause confusion about which one is the true driving factor of
observed results. Therefore, we compensate by adding more



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.2

0.4

0.6

0.8

1

Packing/GEDF Bound

Packing/EDF−FF Bound

GEDF Bound

Federated Bound

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

(a) ϕ = 20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.2

0.4

0.6

0.8

1

Packing/GEDF Bound

Packing/EDF−FF Bound

GEDF Bound

Federated Bound

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n
(b) ϕ = 30

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

Stretch ϕ

M
ax

im
um

 A
cc

ep
te

d 
U

til
iz

at
io

n

 

 

Packing/GEDF
Packing/GEDF Bound
Packing/EDF−FF
Packing/EDF−FF Bound
Sim/GEDF
Sim/EDF−FF
GEDF
GEDF Bound
Federated
Federated Bound

(c) Summary
Figure 7: Varying Stretch ϕ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.2

0.4

0.6

0.8

1

Packing/GEDF Bound

Packing/EDF−FF Bound

GEDF Bound

Federated Bound

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

(a) β = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.2

0.4

0.6

0.8

1

Packing/GEDF Bound
Packing/EDF−FF Bound

GEDF Bound

Federated Bound

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

(b) β = 10

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Beta β

M
ax

im
um

 A
cc

ep
te

d 
U

til
iz

at
io

n

 

 

Packing/GEDF
Packing/GEDF Bound
Packing/EDF−FF
Packing/EDF−FF Bound
Sim/GEDF
Sim/EDF−FF
GEDF
GEDF Bound
Federated
Federated Bound

(c) Summary
Figure 8: Varying Budget Utilization Cap

threads into segments to keep individual task utilizations
around the same value.

We vary the value of ϕ from 5 to 30 with step length
5, and compute optimal β for each different ϕ using
Equation (11) and (12). The results show that, although
packing server does not dominate other algorithms for every
ϕ value, it beats the best-known generalized parallel task
utilization bound when ϕ is larger than 8. Moreover, to the
best of our knowledge, Packing/EDF-FF introduces the first
known bound of 70% for EDF-FF algorithm on generalized
parallel tasks with ϕ = 30.

Figure 7 (a) depicts the ϕ = 20 case, where the utilization
bounds for Packing/EDF-ff and Packing/GEDF are 64%
and 60% respectively, beating the best-known bound of
50%. The generalized packing servers over EDF-FF and
GEDF start to miss deadlines when the submitted utilization
surpasses 68% and 90% respectively. Sim/EDF-FF accepts
up to 83% utilization, and Sim/GEDF successfully accepts
a task set with 97% utilization. It can be seen that al-
though simulation-based and generalized packing servers
share the same theoretical utilization bound, sim/EDF-FF
and sim/GEDF outperform their corresponding generalized
packing servers empirically. The reason is that, a common
worst-case workflow topology as shown in Figure 5 curbs
the utilization bounds of both algorithms, leading to the
same theoretical utilization bound. However, randomly gen-
erated DAGs quite unlikely form the worst-case topology,
which allows simulation-based packing servers to avoid
budget enlargements caused by the inflating operations.
When ϕ is set to 30 as shown in Figure 7 (b), the theoretical

schedulability utilization bound for packing servers over
EDF-FF and GEDF further improve to 70% and 67%
respectively.

The curves using GEDF-related schedulers dip at higher
utilization to a value below the bound. This is because
no admission control is used. In the absence of admission
control, EDF suffers a domino effect when the system gets
overloaded causing a sharp decline in the utilization of tasks
that actually meet deadlines. If admission control was used,
all tasks would meet their deadlines as is clear from the
point on the x-axis where the submitted utilization is equal
to the bound.

Figure 7 (c) summarizes, in general, how the parameter
ϕ affects the maximum observed accepted utilization. The
curves without markers indicate the theoretical utilization
bound for Packing/EDF-FF and Packing/GEDF respec-
tively. For randomly generated DAGs, both generalized and
simulation-based packing servers accept higher utilizations
at larger ϕ values, following the same trend shown by
the theoretical bound. Additionally, comparing the bound
computed to the empirically obtained maximum schedulable
utilization, we can conclude that Packing/EDF-FF leads to
the least degree of pessimism when scheduling randomly
generated workflows.

C. Effect of β

The other key parameter in the conversion bound is β.
Although the optimal β can be derived using Equations 11
and 12, it is still important to know how generalized packing
servers behave when using different β values. Figure 8 plots



0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

(I)

0.6 0.7 0.8 0.9 1 1.1
0.6

0.7

0.8

0.9

1

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n
(II)

0.1 0.3 0.5 0.7 0.9 1.1
0

0.2

0.4

0.6

0.8

1

Submitted Utilization

A
cc

ep
te

d 
U

til
iz

at
io

n

 

 

Packing/GEDF
Packing/EDF−FF
Sim/GEDF
Sim/EDF−FF
GEDF
Federated

(III)
Figure 9: Unfavorable DAGs for GEDF and Federated Scheduling

how β influences accepted utilizations, with β varying from
1 to 30 and ϕ fixed at 30. The optimal β values are 4.56
and 5.47 for Packing/EDF-FF and Packing/GEDF respec-
tively. In Figure 8 (a) where β = 5, Packing/EDF-FF and
Packing/GEDF both achieve considerably high utilization
bounds, as β is close to the optimal value. Empirically,
they also accepts more than 80% utilization. The accepted
utilization of Packing/EDF-FF dramatically drops to 65%
when β increases to 10, as shown in Figure 8 (b). The results
confirm that β fundamentally impacts accepted utilizations.
As summarized in Figure 8 (c), there is a clear trend of
ascending followed by descending when β increases from
1 to 30. The pinnacle in the bound curve conforms to the
optimal beta value of 4.56 and 5.42. Again, Figure 8 shows
that the utilization bound for Packing/EDF-FF achieves the
least degree of pessimism.

D. Effect of DAG Topology

In experiments using randomly generated DAGs, GEDF
performs well, and accepts more than 90% utilization in
most cases. However, there are also cases where the gen-
eralized packing servers significantly outperforms GEDF
and Federated scheduling policies. Consider three sets of
implicit-deadline parallel tasks.
• Task set (I): Task τ1 consists of one segment of
m1

1 = 100 threads, each with length c11 = 1. Task
τ2 contains a single thread of length c12 = 100. The
deadlines for the two workflows are D1 = 101, and
D2 = 102 respectively.

• Task set (II): Compared to Task set I, the only differ-
ence is that c12 shrinks to 25.

• Task set (III): Task τ1 consists of a single segment,
with c11 = 3, and m1

1 = 27. The deadline D1 is set to
80.

In the above three task sets, τ1 can be copied an arbitrary
number of times to achieve a desired task set utilization.

Task sets (I) and (II) represent unfavorable DAGs for the
GEDF scheduler. Figure 9 (I) plots the simulation results for
task set (I). In this case, the GEDF scheduler starts to miss
deadline at a utilization of 4%, while the both generalized
packing server and simulation-based packing servers accept
up to 99% task set utilizations. In this task set, τ2 contains

a long thread of length c12 = 100, and subjects to a slightly
larger deadline of D2 = 102, compared to other tasks. So,
GEDF schedules other tasks prior to τ2, forcing τ2 to miss
its deadline at a very low task set utilization. Packing servers
handle these input tasks well due to the result of packing.
By setting β = 1, every task is packed into a single budget,
allowing τ2 to enjoy its execution opportunity when the
task set utilization is below 99%. Task set (I) is out of the
scope considered in literature [7], as the stretch ϕ is smaller
than 3+

√
5

2 . Task set (II) present tasks with larger stretches
where the 2

3+
√
5
≈ 38.2% utilization bound is applicable.

Figure 9 (II) elucidates the result. GEDF and Federated
schedulers misses deadlines when task utilization reaches
76%, whereas packing servers accepts all tasks when the
total utilization stays below 97%.

Task sets (III) is unfavorable for the Federated scheduler.
The simulation results are presented in Figure 9 (III). The
accepted utilization of the Federated scheduling policy stays
at 50%, which is its theoretical schedulability utilization
bound. It is because, under this configuration, Ci−Li

Di−Li
=

81−3
80−3 = 78

77 is slightly larger than 1, forcing the Federated
scheduler to allocate 2 cores to each task. As a result,
half of the resources in the platform are wasted. From this
perspective, Federated scheduling algorithm prefers higher
individual task utilizations. Generalized packing servers ac-
cept 72% task set utilization, and simulation-based packing
servers accept 81% utilization. GEDF does not miss any
deadline when the task set utilization is smaller than 90%.

These measurements convey that no single scheduler
dominates all others. Therefore, systems without prior
knowledge of the DAG topology can only turn to the
theoretically utilization bound for schedulability guarantees.

V. RELATED WORK

The generalized parallel task scheduling problem has
been recently studied on multiprocessor platforms. Baruah
et al. [5] prove that EDF can achieve a 2X speedup bound
for a single recurrent workflow. Saifullah et al. [4] propose
to arrange a workflow into stages, and then the workflow’s
deadline is split and assigned to each stage. If some optimal
algorithm can successfully schedule the original workflow,
their solution is guaranteed to satisfy the same deadline with



4X (speedup bound) speed processors. When the workflow
is restricted to a fork-join model [17, 18], Lakshmanan et
al. [19] improve the speedup bound to 3.42. Li et al. [6]
develop a capacity augmentation bound of 4− 2

m for work-
flows, which immediately leads to a simple and effective
schedulability test. More recently, Li et al. [7] improve
the capacity augmentation bound to 2 using the federated
scheduling algorithm for implicit deadline workflows. They
then prove the same result for stochastic parallel tasks [20].
Analysis from literature [1] shows a speedup bound for
the federated scheduling algorithm to be

(
4− 2

m

)
when

using arbitrary-deadline sporadic DAG models. Fonseca et
al. [2] further introduce conditional executions into the
generalized parallel task models to capture the conditional
constructs, such as if-then-else clauses. Baruah et al. [3]
later prove a speedup factor of

(
2− 1

m

)
for the conditional

sporadic generalized parallel tasks. These efforts study the
generalized parallel task scheduling problem by directly
analyzing its behavior on multiprocessor platforms.

Compared to above approaches, packing servers take a
different path to solve the generalized parallel task schedul-
ing problem. Namely, they offer a mechanism for converting
the original task set into independent tasks. Unlike other
conversion-based approaches, in packing servers the result-
ing independent tasks (server budgets) are subject to the
same original end-to-end deadlines. Since the deadlines are
not broken into per-segment deadlines, no artificial deadline
constraints are introduced, which improves schedulability.
Our prior work [9] analyzes the workflow scheduling prob-
lem in MapReduce applications [21], where the MapReduce
workload and system architecture allow the packing server
to conduct simulation in the underlying scheduler. How-
ever, simulations are a luxury that many embedded system
schedulers cannot afford, due to excessive overhead. In this
paper, we propose the generalized packing server that no
longer requires simulations, and at the same time achieves
the same theoretically schedulability utilization bound as
the simulation-based packing servers. With the generalized
packing server techniques, the generalized parallel task
scheduling problem will continuously benefit from the rich
body of existing and future advances of independent task
scheduling algorithms and analysis.

VI. CONCLUSION

In this paper, we propose and evaluate the generalized
packing server for task graphs on multiple resource plat-
forms. Generalized packing servers allow utilization bounds
for independent tasks to be applied to generalized parallel
tasks, with a scaling factor ϕ−β

ϕ , where ϕ is the deadline to
critical path length ratio and β is a tunable parameter that
controls the maximum utilization of the corresponding in-
dependent budgets (umax ≤ 1

β ). The scaling factor is called
the conversion bound. More specifically, if the underlying

independent task scheduler achieves a utilization bound
of UB , then generalized packing servers guarantee that
UB · ϕ−βϕ is a valid utilization bound for generalized parallel
tasks. For task sets with large ϕ, the new bound beats
the best-known utilization bound of generalized parallel
tasks (50%). For example, when the underlying scheduler
uses the EDF-FF policy, generalized packing servers may
improve the utilization bound to 70% on ϕ ≥ 30 task sets.
Our evaluation empirically confirms the validity of derived
utilization bounds and evaluate their degree of pessimism.

REFERENCES

[1] S. Baruah, “federated scheduling of sporadic dag task systems,” in
IEEE IPDPS, 2015.

[2] J. C. Fonseca, V. Nélis, G. Raraviand, and L. M. Pinho, “A multi-dag
model for real-time parallel applications with conditional execution,”
in ACM/SIGAPP Symposium on Applied Computing (SAC), 2015.

[3] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “federated
scheduling of sporadic dag task systems,” in ECRTS, 2015.

[4] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in IEEE RTSS, 2011.

[5] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in IEEE RTSS, 2012.

[6] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global edf for
parallel tasks,” in IEEE ECRTS, 2013.

[7] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah,
“Analysis of federated and global scheduling for parallel real-time
tasks,” in ECRTS, 2014.

[8] G. Liu, Y. Lu, S. Wang, and Z. Gu, “Partitioned multiprocessor
scheduling of mixed-criticality parallel jobs,” in IEEE RTCSA, 2014.

[9] S. Li, S. Hu, and T. Abdelzaher, “The packing server for real-time
scheduling of mapreduce workflows,” in IEEE RTAS, 2015.

[10] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for
hard-real-time systems,” The Journal of Real-Time Systems, vol. 1,
pp. 27–60, 1989.

[11] B. Sprunt and L. Sha and J. Lehoczky, “Enhanced aperiodic respon-
siveness in hard real-time environment,” in IEEE RTSS, 1987.

[12] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time
environments,” IEEE Trans. Comput., vol. 44, no. 1, pp. 73–91, 1995.

[13] T. P. Baker, “A comparison of global and partitioned edf schedulabil-
ity tests for multiprocessors,” International Conference on Real-Time
Networks and Systems (RTNS), Tech. Rep., 2005.

[14] J. M. López, M. Garcı́a, J. L. Dı́az, and D. F. Garcı́a, “Worst-
case utilization bound for edf scheduling on real-time multiprocessor
systems,” in ECRTS, 2000.

[15] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
in ACM STOC, 1993.

[16] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic
tasks on multiple resources,” in IEEE IPDPS, 1995.

[17] C. Maia, L. Nogueira, L. M. Pinho, and M. Bertogna., “Response-
time analysis of fork/join tasks in multiprocessor systems,” in ECRTS,
2013.

[18] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,”
in International Conference on Real-Time Networks and Systems
(RTNS), 2014.

[19] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in IEEE RTSS, 2010.

[20] J. Li, K. Agrawal, C. Gill, and C. Lu, “Federated scheduling for
stochastic parallel real-time tasks,” in RTCSA, 2014.

[21] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace,
“Woha: Deadline-aware map-reduce workflow scheduling framework
over hadoop cluster,” in IEEE ICDCS, 2014.


