31 research outputs found

    Hierarchical Ensemble of Global and Local Classifiers for Face Recognition

    Full text link

    A Generalized Packing Server for Scheduling Task Graphs on Multiple Resources

    Get PDF
    This paper presents the generalized packing server. It reduces the problem of scheduling tasks with precedence constraints on multiple processing units to the problem of scheduling independent tasks. The work generalizes our previous contribution made in the specific context of scheduling Map/Reduce workflows. The results apply to the generalized parallel task model, introduced in recent literature to denote tasks described by workflow graphs, where some subtasks may be executed in parallel subject to precedence constraints. Recent literature developed schedulability bounds for the generalized parallel tasks on multiprocessors. The generalized packing server, described in this paper, is a run-time mechanism that packs tasks into server budgets (in a manner that respects precedence constraints) allowing the budgets to be viewed as independent tasks by the underlying scheduler. Consequently, any schedulability results derived for the independent task model on multiprocessors become applicable to generalized parallel tasks. The catch is that the sum of capacities of server budgets exceeds by a certain ratio the sum of execution times of the original generalized parallel tasks. Hence, a scaling factor is derived that converts bounds for independent tasks into corresponding bounds for generalized parallel tasks. The factor applies to any work-conserving scheduling policy in both the global and partitioned multiprocessor scheduling models. We show that the new schedulability bounds obtained for the generalized parallel task model, using the aforementioned conversion, improve in several cases upon the best known bounds in current literature. Hence, the packing server is shown to improve the schedulability of generalized parallel tasks. Evaluation results confirm this observation.Ope

    Classifiability-based Optimal Discriminatory Projection Pursuit

    Full text link
    Linear Discriminant Analysis (LDA) might be the most widely used linear feature extraction method in pattern recognition. Based on the analysis on the several limitations of traditional LDA, this paper makes an effort to propose a new computational paradigm named Optimal Discriminatory Projection Pursuit (ODPP), which is totally different from the traditional LDA and its variants. Only two simple steps are involved in the proposed ODPP: one is the construction of candidate projection set; the other is the optimal discriminatory projection pursuit. For the former step, candidate projections are generated as the difference vectors between nearest between-class boundary samples with redundancy well-controlled, while the latter is efficiently achieved by classifiability-based AdaBoost learning from the large candidate projection set. We show that the new 'projection pursuit' paradigm not only does not suffer from the limitations of the traditional LDA but also inherits good generalizability from the boundary attribute of candidate projections. Extensive experimental comparisons with LDA and its variants on synthetic and real data sets show that the proposed method consistently has better performances. ?2008 IEEE.EI

    Robust 3.7 V-Na2/3_{2/3}[Cu1/3_{1/3}Mn2/3_{2/3}]O2_2 Cathode for Na-ion Batteries

    Full text link
    Na-ion batteries (NIBs), which are recognized as a next-generation alternative technology for energy storage, still suffer from commercialization constraints due to the lack of low-cost, high-performance cathode materials. Since our first discovery of Cu3+^{3+}/Cu2+^{2+} electrochemistry in 2014, numerous Cu-substituted/doped materials have been designed for NIBs. However for almost ten years, the potential of Cu3+^{3+}/Cu2+^{2+} electrochemistry has been grossly underappreciated and normally regarded as a semielectrochemically active redox. Here, we re-synthesized P2-Na2/3_{2/3}[Cu1/3_{1/3}Mn2/3_{2/3}]O2_2 and reinterpreted it as a high-voltage, cost-efficient, air-stable, long-life, and high-rate cathode material for NIBs, which demonstrates a high operating voltage of 3.7 V and a completely active Cu3+^{3+}/Cu2+^{2+} redox reaction. The 2.3 Ah cylindrical cells exhibit excellent cycling (93.1% capacity after 2000 cycles), high rate (97.2% capacity at 10C rate), good low-temperature performance (86.6% capacity at -30∘^\circC), and high safety, based on which, a 56 V-11.5 Ah battery pack for E-bikes is successfully constructed, exhibiting stable cycling (96.5% capacity at the 800th cycle) and a long driving distance (36 km, tester weight 65 kg). This work offers a commercially feasible cathode material for low-cost, high-voltage NIBs, paving the way for advanced NIBs in power and stationary energy storage applications.Comment: 15 pages, 3 figures, 1 tabl

    Adaptive generic learning for face recognition from a single sample per person

    No full text
    Real-world face recognition systems often have to face the single sample per person (SSPP) problem, that is, only a single training sample for each person is enrolled in the database. In this case, many of the popular face recognition methods fail to work well due to the inability to learn the discriminatory information specific to the persons to be identified. To address this problem, in this paper, we propose an Adaptive Generic Learning (AGL) method, which adapts a generic discriminant model to better distinguish the persons with single face sample. As a specific implementation of the AGL, a Coupled Linear Representation (CLR) algorithm is proposed to infer, based on the generic training set, the within-class scatter matrix and the class mean of each person given its single enrolled sample. Thus, the traditional Fisher's Linear Discriminant (FLD) can be applied to SSPP task. Experiments on the FERET and a challenging passport face database show that the proposed method can achieve better results compared with other common solutions to the SSPP problem. ?2010 IEEE.EI

    Adaptive discriminant learning for face recognition

    No full text
    Face recognition from Single Sample per Person (SSPP) is extremely challenging because only one sample is available for each person. While many discriminant analysis methods, such as Fisherfaces and its numerous variants, have achieved great success in face recognition, these methods cannot work in this scenario, because more than one sample per person are needed to calculate the within-class scatter matrix. To address this problem, we propose Adaptive Discriminant Analysis (ADA) in which the within-class scatter matrix of each enrolled subject is inferred using his/her single sample, by leveraging a generic set with multiple samples per person. Our method is motivated from the assumption that subjects who look alike to each other generally share similar within-class variations. In ADA, a limited number of neighbors for each single sample are first determined from the generic set by using kNN regression or Lasso regression. Then, the within-class scatter matrix of this single sample is inferred as the weighted average of the within-class scatter matrices of these neighbors based on the arithmetic mean or Riemannian mean. Finally, the optimal ADA projection directions can be computed analytically by using the inferred within-class scatter matrices and the actual between-class scatter matrix. The proposed method is evaluated on three databases including FERET database, FRGC database and a large real-world passport-like face database. The extensive results demonstrate the effectiveness of our ADA when compared with the existing solutions to the SSPP problem
    corecore