38 research outputs found

    Measuring Near Plasma Membrane and Global Intracellular Calcium Dynamics in Astrocytes

    Get PDF
    The brain contains glial cells. Astrocytes, a type of glial cell, have long been known to provide a passive supportive role to neurons. However, increasing evidence suggests that astrocytes may also actively participate in brain function through functional interactions with neurons. However, many fundamental aspects of astrocyte biology remain controversial, unclear and/or experimentally unexplored. One important issue is the dynamics of intracellular calcium transients in astrocytes. This is relevant because calcium is well established as an important second messenger and because it has been proposed that astrocyte calcium elevations can trigger the release of transmitters from astrocytes. However, there has not been any detailed or satisfying description of near plasma membrane calcium signaling in astrocytes. Total internal reflection fluorescence (TIRF) microscopy is a powerful tool to analyze physiologically relevant signaling events within about 100 nm of the plasma membrane of live cells. Here, we use TIRF microscopy and describe how to monitor near plasma membrane and global intracellular calcium dynamics almost simultaneously. The further refinement and systematic application of this approach has the potential to inform about the precise details of astrocyte calcium signaling. A detailed understanding of astrocyte calcium dynamics may provide a basis to understand if, how, when and why astrocytes and neurons undergo calcium-dependent functional interactions

    Extracellular ATP/adenosine dynamics in the brain and its role in health and disease

    Get PDF
    Extracellular ATP and adenosine are neuromodulators that regulate numerous neuronal functions in the brain. Neuronal activity and brain insults such as ischemic and traumatic injury upregulate these neuromodulators, which exert their effects by activating purinergic receptors. In addition, extracellular ATP/adenosine signaling plays a pivotal role in the pathogenesis of neurological diseases. Virtually every cell type in the brain contributes to the elevation of ATP/adenosine, and various mechanisms underlying this increase have been proposed. Extracellular adenosine is thought to be mainly produced via the degradation of extracellular ATP. However, adenosine is also released from neurons and glia in the brain. Therefore, the regulation of extracellular ATP/adenosine in physiological and pathophysiological conditions is likely far more complex than previously thought. To elucidate the complex mechanisms that regulate extracellular ATP/adenosine levels, accurate methods of assessing their spatiotemporal dynamics are needed. Several novel techniques for acquiring spatiotemporal information on extracellular ATP/adenosine, including fluorescent sensors, have been developed and have started to reveal the mechanisms underlying the release, uptake and degradation of ATP/adenosine. Here, we review methods for analyzing extracellular ATP/adenosine dynamics as well as the current state of knowledge on the spatiotemporal dynamics of ATP/adenosine in the brain. We focus on the mechanisms used by neurons and glia to cooperatively produce the activity-dependent increase in ATP/adenosine and its physiological and pathophysiological significance in the brain

    The astrocytic TRPA1 channel mediates an intrinsic protective response to vascular cognitive impairment via LIF production

    Get PDF
    認知症に対する新たな生体防御機構の発見 --アストロサイトのTRPA1活性化が、LIF産生を介して白質傷害や認知機能障害を防ぐ--. 京都大学プレスリリース. 2023-07-24.Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI

    Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy

    Get PDF
    Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy

    Probing the Complexities of Astrocyte Calcium Signaling.

    No full text

    Visualization of diversity of calcium signals in astrocytes

    No full text
    corecore