19 research outputs found

    The Evolutionary Origin of the Runx/CBFbeta Transcription Factors – Studies of the Most Basal Metazoans

    Get PDF
    BACKGROUND. Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFβ, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals. RESULTS. In this study, we detect and characterize the hitherto unexplored Runx/CBFβ genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity. Comparative structural modeling indicates that the Runx-CBFβ-DNA complex from most cnidarians and sponges is highly similar to that found in humans, with changes in the residues involved in Runx-CBFβ dimerization in either of the proteins mirrored by compensatory changes in the binding partner. In situ hybridization studies reveal that Nematostella Runx and CBFβ are expressed predominantly in small isolated foci at the base of the ectoderm of the tentacles in adult animals, possibly representing neurons or their progenitors. CONCLUSION. These results reveal that Runx and CBFβ likely functioned together to regulate transcription in the common ancestor of all metazoans, and the structure of the Runx-CBFβ-DNA complex has remained extremely conserved since the human-sponge divergence. The expression data suggest a hypothesis that these genes may have played a role in nerve cell differentiation or maintenance in the common ancestor of cnidarians and bilaterians.National Science Foundation (IBN-0212773, FP-91656101-0); Boston University SPRInG (20-202-8103-9); Israel Science Foundation (825/07

    コウゴウセイサイキンRhodospirillum rubrumニオケルコハクサン : グリシンカイロノソンザイニツイテ

    No full text
    京都大学0048新制・課程博士理学博士甲第1200号理博第240号新制||理||157(附属図書館)3511UT51-47-G4京都大学大学院理学研究科化学専攻(主査)教授 香月 裕彦, 教授 波多野 博行, 教授 由良 隆学位規則第5条第1項該当Kyoto UniversityDA

    Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms

    No full text
    The RUNX family represents a small group of heterodimeric transcription factors that master-regulate osteogenesis and hematopoiesis in mammals. Their genetic defects cause human diseases such as cleidocranial dysplasia (CCD) and acute myelogenous leukemia. However, the mechanism(s) regulating their functions are still poorly understood. Here, we report a novel observation that suggests that the osteogenesis-associated homologue RUNX2 is negatively regulated by the phosphorylation of two conserved serines (S104 and S451) in two distinct functional aspects. The phosphorylation of S104 could abolish the heterodimerization of RUNX2 with the partner subunit, PEBP2β, which enhances the metabolic stability of RUNX2. On the other hand, the phosphorylation of S451 resides within the C-terminal transcription inhibition domain of RUNX2 and hence is implicated in its functional mobilization. One CCD mutation, S104R of RUNX2, appears to mimic the phosphorylation-dependent inhibition of heterodimerization, thereby rendering RUNX2 metabolically unstable

    Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11

    No full text
    Inv(16)(p13q22) is associated with acute myeloid leukemia subtype M4Eo that is characterized by the presence of myelomonocytic blasts and atypical eosinophils. This chromosomal rearrangement results in the fusion of CBFB and MYH11 genes. CBF beta normally interacts with RUNX1 to form a transcriptionally active nuclear complex. The MYH11 gene encodes the smooth muscle myosin heavy chain. The CBF beta-SMMHC fusion protein is capable of binding to RUNX1 and form dimers and multimers through its myosin tail. Previous results from transgenic mouse models show that Cbfb-MYH11 is able to inhibit dominantly Runx1 function in hematopoiesis, and is a key player in the pathogenesis of leukemia. In recent years, molecular and cellular biological studies have led to the proposal of several models to explain the function of CBF beta-SMMHC. In this review, we will first focus our attention on the molecular mechanisms proposed in the recent publications. We will next examine recent gene expression profiling studies on inv(16) leukemia cells. Finally, we will describe a recent study from one of our labs on the identification of cooperating genes for leukemogenesis with CBFB-MYH11

    Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin–proteasome-mediated degradation

    No full text
    The RUNX family genes are the mammalian homologs of the Drosophila genes runt and lozenge, and members of this family function as master regulators of definitive hematopoiesis and osteogenesis. The RUNX genes encode the α subunit of the transcription factor PEBP2/CBF. The β subunit consists of the non-RUNX protein PEBP2β. We found that RUNX1/AML1, which is essential for hematopoiesis, is continuously subjected to proteolytic degradation mediated by the ubiquitin–proteasome pathway. When PEBP2β is present, however, the ubiquitylation of RUNX1 is abrogated and this causes a dramatic inhibition of RUNX1 proteolysis. Heterodimerization between PEBP2β and RUNX1 thus appears to be an essential step in the generation of transcriptionally competent RUNX1. Consistent with this notion, RUNX1 was barely detected in PEBP2β(–/–) mouse. CBF(PEBP2)β– SMMHC, the chimeric protein associated with inv(16) acute myeloid leukemia, was found to protect RUNX1 from proteolytic degradation more efficiently than PEBP2β. These results reveal a hitherto unknown and major role of PEBP2β, namely that it regulates RUNX1 by controlling its turnover. This has allowed us to gain new insights into the mechanism of leukemogenesis by CBFβ–SMMHC
    corecore