313 research outputs found

    Antigen-Specific Polyclonal Cytotoxic T Lymphocytes Induced by Fusions of Dendritic Cells and Tumor Cells

    Get PDF
    The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs) that can reduce the tumor mass. Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science and Technology of Japan, Grant-in-Aid of the Japan Medical Association, Takeda Science Foundation, Pancreas Research Foundation of Japan, The Promotion and Mutual Aid Corporation for Private School of Japan and Foundation for Promotion of Cancer Researc

    Elastic Instabilities within Antiferromagnetically Ordered Phase in the Orbitally-Frustrated Spinel GeCo2_2O4_4

    Full text link
    Ultrasound velocity measurements of the orbitally-frustrated GeCo2_2O4_4 reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-range ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.Comment: 5 pages, 3 figure

    Spin-orbit coupling inactivity of Co2+^{2+} ion in geometrically frustrated magnet GeCo2_2O4_4

    Full text link
    We report single-crystal neutron diffraction studies on a spinel antiferromagnet GeCo2_2O4_4, which exhibits magnetic order with a trigonal propagation vector and tetragonal lattice expansion (c/a1.001c/a\simeq1.001) below TN=21T_{\rm N}=21 K. For this inconsistency between spin and lattice in symmetry, magnetic Bragg reflections with a tetragonal propagation vector were discovered below TNT_{\rm N}. We discuss spin and orbital states of Co2+^{2+} ion underlying the new magnetic component.Comment: 3 pages 2 figures, submitted to ICFCM proceeding (Journal of Physics: Conference Series, 2011

    Regulation of Tumor Immunity by Tumor/Dendritic Cell Fusions

    Get PDF
    The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.Foundation for the Promotion of Cancer Research; Mitsui Life Social Welfare Foundation; Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science, and Technology of Japan; Grant-in-Aid of the Japan Medical Association; Takeda Science Foundation; Pancreas Research Foundation of Japa
    corecore