110 research outputs found

    Role of RNase H1 in DNA repair: Removal of single ribonucleotide misincorporated into DNA in collaboration with RNase H2

    Get PDF
    Several RNases H1 cleave the RNA-DNA junction of Okazaki fragment-like RNA-DNA/DNA substrate. This activity, termed 3’-junction ribonuclease (3’-JRNase) activity, is different from the 5’-JRNase activity of RNase H2 that cleaves the 5’-side of the ribonucleotide of the RNA-DNA junction and is required to initiate the ribonucleotide excision repair pathway. To examine whether RNase H1 exhibits 3’-JRNase activity for dsDNA containing a single ribonucleotide and can remove this ribonucleotide in collaboration with RNase H2, cleavage of a DNA(8)-RNA(1)-DNA(9)/DNA(18) substrate with E. coli RNase H1 and H2 was analyzed. This substrate was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction in advance or not. Likewise, this substrate was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction in advance or not. When this substrate was cleaved by a mixture of E. coli RNases H1 and H2, the ribonucleotide was removed from the substrate. We propose that RNase H1 is involved in the excision of single ribonucleotides misincorporated into DNA in collaboration with RNase H2

    Alkane inducible proteins in Geobacillus thermoleovorans B23

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution.</p> <p>Results</p> <p>An extremely thermophilic and alkane degrading <it>Geobacillus thermoleovorans </it>B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane.</p> <p>Conclusion</p> <p>We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.</p

    Cleavage of a DNA–RNA–DNA/DNA chimeric substrate containing a single ribonucleotide at the DNA–RNA junction with prokaryotic RNases HII

    Get PDF
    AbstractWe have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA–RNA–DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5′-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA–RNA junction (5′-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA

    A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon

    Get PDF
    AbstractA RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein

    Crystallizability of an engineered monomeric mutant of FK506-binding protein from Shewanella sp. SIB1: preliminary diffraction data analysis

    Get PDF
    Background and Objective: A 22 kDa FK506-binding protein from a psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a member of peptidyl prolyl cis-trans isomerase (PPIase). This protein is homodimer with a V-shaped form, consisting of N and C-domains, that are connected through a long α-helix, responsible for dimerization and PPIase activity, respectively. Understanding on structural mechanisms behind the function of SIB1 FKBP22 is limited by unsuccessful attempts on crystallization of the full length SIB1 FKBP22 homodimer due to its flexibility and low stability. Despite the isolated N-domain, with the absence of α-helix and C-domain was successfully crystallized and structurally solved, the comprehensive structural arrangement of SIB1 FKBP22 remains missing. The objective of this study is to construct a crystallizable SIB1 FKBP22 derivatives consisting of N and C-domains with its α-helix that reflect full length of SIB1 FKBP22 and a platform for comprehensive structural analysis. Materials and Methods: A monomeric mutant of SIB1 FKBP22 was constructed by combining two gene fragments encoding Met 8-Ile 205 and Met 1-Ala 60 of the first and second monomer of SIB1 FKBP22, respectively, with three glycine residues. This design yielded the mutant has tandemly repeated N-domain connected to C-domain through a long α-helix hence designated as NNC-FKBP22. Results: The NNC-FKBP22 was monomeric in solution implying that it did not form a V-shaped dimeric structure. The crystallization of NNC-FKBP22 was attempted under sitting-drop vapor diffusion. The crystals were obtained under 1.0 M sodium citrate with 10 mM CHES/sodium hydroxide at pH 9.5. The crystal was in the space group of P212121 with unit cell dimension a = 94.635, b = 92.479 and c = 337.327 Å. A complete native data was collected from a rotating anode source to a resolution of 3.5 Å at 100 K with an Rmerge value of 25.50. Conclusion: The NNC-FKBP22 was successfully crystallized implying that stabilization of SIB1 FKBP22 under protein engineering platform is promising approach to decipher its atomic structure. Protein engineering technique used in this study would also be applicable for other cold-adapted proteins with high structural flexibility and low stability

    A Stable Protein - CutA1

    Get PDF

    Sequence-specific cleavage of RNA by a hybrid ribonuclease H

    Get PDF
    AbstractSite-specific cleavage of the 22-, 132- and 534-base RNAs by the DNA/protein hybrid R Nase H were examined. The 22-base RNA was chemically synthesized, and 132- and 534-base RNAs were prepared by run-off transcription. The hybrid enzyme cleaves these RNAs, which contain a single target sequence, primarily at the unique phosphodiester bond within the target sequence. The hybrid enzyme performs multiple turnovers, and at a substrate/enzyme ratio of 10:1 the RNAs are almost completely cleaved by the hybrid enzyme at 37°C within 1 h. We propose that hybrid RNase H molecules with various oligodeoxyribonucleotides function as RNA restriction enzymes and are useful for structural and functional studies of RNA

    Isolation of TBP-interacting protein (TIP) from a hyperthermophilic archaeon that inhibits the binding of TBP to TATA-DNA

    Get PDF
    AbstractWe have isolated TBP (TATA-binding protein)-interacting protein (TIP) from cell lysates of a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1, by affinity chromatography with TBP-agarose. Based on the internal amino acid sequence information, PCR primers were synthesized and used to amplify the gene encoding this protein (Pk-TIP). Determination of the nucleotide sequence and characterization of the recombinant protein revealed that Pk-TIP is composed of 224 amino acid residues (molecular weight of 25 558) and exists in a dimeric form. BIAcore analyses for the interaction between recombinant Pk-TIP and recombinant Pk-TBP indicated that they interact with each other with an equilibrium dissociation constant, KD, of 1.24–1.46 μM. A gel mobility shift assay indicated that Pk-TIP inhibited the interaction between Pk-TBP and a TATA-DNA. Pk-TIP may be one of the archaeal factors which negatively regulate transcription

    Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation

    Get PDF
    AbstractThe crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation was determined at 1.5Å resolution. This structure highly resembles that of Serratia marcescens LipA in an open conformation, except for the structures of two lids. Lid1 is anchored by a Ca2+ ion (Ca1) in an open conformation, but lacks this Ca1 site and greatly changes its structure and position in a closed conformation. Lid2 forms a helical hairpin in an open conformation, but does not form it and covers the active site in a closed conformation. Based on these results, we discuss on the lid-opening mechanism

    Crystal structure of stable protein CutA1 from psychrotrophic bacterium Shewanella sp. SIB1

    Get PDF
    The crystal structure of CutA1 from the psychrotrophic bacterium Shewanella sp. SIB1 in a trimeric form was determined at 2.7 Å resolution. This is the first crystal structure of a psychrotrophic CutA1
    corecore