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Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38
in a closed conformation
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Abstract The crystal structure of a family I.3 lipase from Pseu-
domonas sp. MIS38 in a closed conformation was determined at
1.5 Å resolution. This structure highly resembles that of Serratia
marcescens LipA in an open conformation, except for the struc-
tures of two lids. Lid1 is anchored by a Ca2+ ion (Ca1) in an open
conformation, but lacks this Ca1 site and greatly changes its
structure and position in a closed conformation. Lid2 forms a
helical hairpin in an open conformation, but does not form it
and covers the active site in a closed conformation. Based on
these results, we discuss on the lid-opening mechanism.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Family I.3 lipases are distinguished from other lipases not

only by their amino acid sequences, but also by their secretion

mechanism [1]. They are secreted via the type I secretion sys-

tem (T1SS) [2]. T1SS consists of three subunit proteins, which

form a channel that spans the inner and outer membranes of

Gram-negative bacteria. Secretion by this system occurs in a

single step, directly from the cytoplasm to the extracellular

milieu, bypassing the periplasm. Proteins that are secreted

via the T1SS usually have a C-terminal secretion signal and

several repeats of a GGxGxDxux (u: hydrophobic residue) up-

stream of the secretion signal, termed the repeat in toxin

(RTX) motif [2]. These repeats bind Ca2+ ions, forming a

b-roll motif [3]. The first six residues form a Ca2+-binding loop

and the last three form a short b-strand.

Pseudomonas sp. MIS38 produces a family I.3 lipase (PML)

[4]. This lipase (PML) consists of 617 amino acid residues and

two domains. The N-catalytic domain (residues 1–370) con-

tains the active site residues, Ser207, Asp255, and His313 [4,5].

The C-domain contains several repeats of the RTX motif

and a putative secretion signal near the C-terminus. PML re-

quires Ca2+ for activity and folding, but does not require

molecular chaperones for folding [4,6]. PML undergoes inter-
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facial activation [4], suggesting that PML has a lid structure

which is open upon contact with the micelle-forming substrate

like other lipases [7,8]. The RTX motif of PML has been pro-

posed to function as an intramolecular chaperone [2], because

deletion [9] or mutation [10] of this motif generates inactive

proteins, which are incompletely folded. The C-domain of

PML can be used as a secretion tag for extracellular produc-

tion of a heterologous protein via the T1SS [11].

The crystal structure of Serratia marcescens LipA (SML),

which is a family I.3 lipase and shows the amino acid sequence

identity of 61% to PML, has recently been determined [12].

The SML structure consists of the N-terminal lipase domain

and C-terminal RTX domain. The lid of the lipase domain as-

sumes an open conformation, where this lid is anchored by one

Ca2+ ion (Ca1). In parallel, we determined the crystal structure

of PML in a closed conformation. In this structure, not only

the lid (lid1) identified in the SML structure, but also an addi-

tional lid (lid2), undergo significant changes in their positions

and structures, so that they cover the active site. In addition,

the Ca1 site is missing in this structure.
2. Materials and methods

2.1. Protein production, crystallization, and data collection
PML was overproduced, purified and crystallized as a secreted pro-

tein, using the methods described previously [13]. In short, PML was
purified from the LB culture supernatant of Escherichia coli DH5 con-
taining two plasmids, pUC-PML containing the PML gene and
pYBCD20 containing the genes for the T1SS of S. marcescens lipase
[14]. Following purification, PML crystals belonging to space group
P21 were obtained by incubating the mixture of 2 ll of 10 mg/ml pro-
tein solution with 1 ll of the optimized mother liquor [0.1 M MES (pH
6.0), 0.2 M Ca-acetate, 5 mM Zn-acetate, 10% PEG20K] against 100 ll
of the mother liquor using hanging drop vapor diffusion method [13].
Data collection was done at SPring8 (Harima, Japan) using beamline
BL38B1 at �173 �C. Before data collection crystals were flash-cooled
in a nitrogen stream at �173 �C after soaking the crystal in the mother
liquor containing 20% ethylene glycol as a cryoprotectant [13]. A total
of 352 images were recorded with an exposure time of 10 s per image
and an oscillation angle of 1.0�. Diffraction images were indexed, inte-
grated and scaled using the HKL-2000 program suite [15]. PML crystal
has cell parameters of a = 49.97 Å, b = 84.30Å, c = 86.85 Å and con-
tains one molecule per asymmetric unit.

2.2. Site-directed mutagenesis and heavy atom derivatization
Attempts to do phasing using derivatized wild-type PML crystals did

not produce satisfactory results because the crystals did not specifically
bind some heavy atoms or were broken upon incubation with other
heavy atom solutions. Moreover, PML could not be overpro-
duced extracellularly in selenomethionine-containing media. Therefore,
blished by Elsevier B.V. All rights reserved.
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cysteine mutagenesis was employed to introduce a heavy atom binding
site to the protein. Previous report showed that mutations of serine to
cysteine have high success rates for heavy atom binding [16]. Twelve
serine residues (Ser95, Ser144, Ser220, Ser242, Ser270, Ser312, Ser335,
Ser384, Ser445, Ser472, Ser538 and Ser608) were picked randomly and were
individually mutated to cysteine by site-directed mutagenesis (Quik-
Change, Stratagene, La Jolla, CA). Mutations were confirmed by
sequencing with an ABI PRISM 310 Genetic Analyzer (Perkin–Elmer).
Purification and crystallization of the mutant proteins were done using
the same procedures as those of the wild-type protein.

For heavy atom derivatization, crystals of PML and its mutants
were soaked in the mother liquor containing 40 mM of K2PtCl4 for
one week. After soaking, the crystals were back soaked in the mother
liquor containing 20% ethylene glycol. Difference Patterson map
showed that one mutant, S445C, has one Pt bound specifically (data
not shown). Data collection of the heavy atom derivatives was done
as described for the native crystal.

2.3. Structure solution and refinement
The structure was solved by the single isomorphous replacement

with anomalous scattering (SIRAS) method using the HKL2MAP
[17,18] graphical user interface, employing the Pt-derivative of S445C
crystal. Automated model building was done by using ArpWarp [19].
Refinement was carried out by using REFMAC [20] of the CCP4 suite
[21], and the model was completed and corrected using COOT [22].
The statistics for data collection and refinement are presented in Table
1. The atomic coordinates and structure factors are available from the
Protein Data Bank (PDB) under the entry code 2Z8X. Figures were
prepared using PyMol (http://www.pymol.org).
3. Results and discussion

3.1. Overall structure

The PML structure was determined at 1.5 Å resolution by

the SIRAS method using a Pt-derivatized crystal of a cysteine
Table 1
Statistics on data processing and structure determinationc

Native wild-type

Space group P21

Unit cell a = 49.972, b = 84.300, c =
Wavelength (Å) 0.9
Resolution range (Å) 50.00–1.48 (1.53–1.48)
Unique reflections 118,695
Redundancy 7.2 (5.8)
Completeness 96.9 (79,.3)
I/r 38.3 (3.8)
Rmerge

a (%) 5.5 (33.3)

Refinement statistics
Resolution range (Å) 37.08–1.48
No. of reflections 107,798
Cutoff None
R-value (%) 17.7
Free R-valueb (%) 19.4
No. of protein atoms 4553
No. of solvent atoms 769
Rms deviations from ideal values
Bond lengths (Å) 0.008
Bond angles (�) 1.175

Ramachandran plot statistics. Percentage of residues in regions:
Most favored 91.8
Additionally allowed 7.4
Generously allowed 0.8
Disallowed 0.0

aRmerge ¼
P
j Ihkl � ðIhklÞ j =

P
Ihkl.

bFree R-value was calculated using 5% of reflections omitted from the refine
cNumbers in parentheses are for the highest resolution shell.
mutant. The entire amino acid sequence of PML was observed

in the electron density except the N-terminal methionine resi-

due. PML consists of two domains, an N-domain that is rich

in a-helices and a C-domain that is rich in b-strands

(Fig. 1A). This structure highly resembles the SML structure

[12], except for the lid structures (residues 46–74 and 146–

167) (Fig. 1B). The steric configurations of the active site res-

idues (Ser207, Asp255 and His313), that form a catalytic triad,

are nearly identical to those of SML (Fig. 1B). The rms devi-

ation of the PML and SML structures is 0.7 Å for the entire

structure, excluding the lid structure, and 0.15 Å for the side

chains of the active site residues. Besides the protein molecule,

the density of 10 Ca2+ ions, 2 Zn2+ ions, and 769 water mole-

cules were observed in the asymmetric unit. The Zn2+ ions are

located at the interfaces of the protein molecule, and each is

coordinated by two protein molecules, indicating that Zn2+

ions are required for crystal formation.

3.2. Ca2+-binding sites in the lipase domain

The N-terminal lipase domain contains two Ca2+-binding

sites, like that of SML. However, the Ca1 site of SML is missing

in the PML structure. The conserved and unique Ca2+-binding

sites of the lipase domain of PML are therefore termed Ca2 and

Ca3, respectively. At the Ca3 site, the Ca2+ ion is heptacoordi-

nated by the side chains of Lys278, Asp283, and Asp337 (both oxy-

gen atoms), carbonyl O of Ala281, and two water molecules.

Because the residues forming this site is relatively well conserved

in the SML structure and the concentration of the Ca2+ ion used

for crystallization is 200 mM for PML and 10 mM for SML,

this site may represent a weak Ca2+-binding site. The role of

the Ca2 and Ca3 sites remains to be elucidated.
Pt-derivative S445C

P21

86.849 a = 49.879, b = 84.404, c = 87.012
1.071784
50.0–1.80 (1.86–1.80)
65,946
7.2 (6.3)
95.9 (82.5)
26.9 (3.4)
7.4 (29.8)

ment.

http://www.pymol.org


Fig. 1. (A) Stereo view of the cartoon model of PML structure, colored based on secondary structures. Ca2+ and Zn2+ ions are shown in yellow and
blue spheres, respectively. Two Ca2+-binding sites (Ca2 and Ca3) in the N-terminal lipase domain and the first and second b-roll motifs are indicated.
Lid1 and lid2 are colored orange and blue, respectively. Three active site residues (Ser207, Asp255, and His313) are indicated by stick models. N and C
represent the N- and C-termini. (B) Superposition of the structures of PML and SML (PDB ID: 2QUB), which are colored green and gray,
respectively. Lid1 and lid2 of PML are colored orange and blue, while those of SML are colored yellow and light blue, respectively. Ca2+ ions in the
PML and SML structures are shown in yellow and dark-gray spheres, respectively. Zn2+ ions are shown in blue spheres. Three active site residues
(Ser207, Asp255, and His313) are indicated by stick models. (C) Stereo view of the lipase domain. The structures of the lipase domains of PML and
SML are superimposed. The structures shown in Fig. 1B are viewed from the top. The Ca2+ ion bound to the Ca1 site is shown in dark gray sphere.
The side chains of Asp153, Asp157, and Gln120, which coordinate with this Ca2+ ion in an open conformation, are indicated by stick models, in
addition to those of three active site residues. The side chains of Asp153 and Asp157 in a closed conformation are also indicated.
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3.3. Lid structures

Comparison of the PML and SML structures indicate that

the conformations of helix a6 and the region containing helix

a3, which are termed lid1 and lid2, respectively, greatly vary
for these structures (Fig. 1C). Lid1 (residues 146–167 in

PML), which corresponds to the well known lid of lipases,

assumes an open conformation in the SML structure, while

it assumes a closed conformation in the PML structure. In
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addition, it is sharply bent at the middle of the helix in the

PML structure. Lid1 of SML is anchored by the Ca2+ ion

bound to the Ca1 site to its position, while that of PML is

not. This Ca2+ ion is buried inside the protein molecule and

is coordinated by the side chains of Asp153, Asp157, and

Gln120, and the carbonyl oxygens of Thr118 and Ser144. The

Ca1 site is missing in the closed conformation, because

Asp153 and Asp157, which are located in helix a6, greatly

change their positions in the closed conformation as compared

to those in the open conformation. Previous studies showed

that PML requires one Ca2+ ion for activity [6]. The observa-

tion that the Ca1 site is formed only in the open conformation

and the conformation of the active site is not seriously changed

regardless of the lid structures suggest that this catalytically

essential Ca2+ ion binds to the Ca1 site to stabilize the open

conformation. In the absence of this Ca2+ ion, the lid structure

in the open conformation may be unstable because of the bur-

ied charged residues of lid1.

Like lid1, lid 2 (residues 46–74 in PML) assumes an open con-

formation, in which helix a3 forms an a-helix hairpin with a2,

in the SML structure, while it assumes a closed conformation,

in which helix a3 covers the active site, in the PML structure.

Because none of the lipases so far reported contains this second

lid, family I.3 lipases may be distinguished from other lipases by

the presence of this second lid. It is noted that the hydrophobic

side chains of both lid1 and lid2 are buried toward the active

site in the closed conformation, while they are exposed to the

solvent in the open conformation. Because PML and SML

are crystallized in the absence and presence of detergent,

respectively, the hydrophobic side chains exposed to the solvent

in SML may be stabilized by detergent. We propose that the

lids of family I.3 lipases open upon interaction with the hydro-

phobic surface of micellar substrate and this open conforma-

tion is stabilized by the Ca2+ ion bound to the Ca1 site.
3.4. b-roll motif

The C-domain of PML contains two b-roll motifs, laterally

stacked together forming the so-called b-roll sandwich [12],

similar to that of SML. The first b-roll motif consists of resi-

dues 373–417, containing five RTX repeats and binds three

Ca2+ ions that are ‘‘dry’’, i.e. has no coordination with water

molecules. The second b-roll motif consists of residues 493–

568, containing eight RTX repeats and binds five Ca2+ ions.

The last two Ca2+ ions that bind to this motif have coordina-

tion with water molecules, while the other three are ‘‘dry’’. Be-

cause each Ca2+ ion binds between a pair of the loops formed

by the RTX motifs, the first and second b-roll motifs contain

at most three and six Ca2+-binding sites, respectively. All pos-

sible Ca2+-binding sites are occupied by the Ca2+ ion in the

first b-roll motifs of PML and SML. In contrast, only five

and three Ca2+-binding sites are occupied by the Ca2+ ion in

the second b-roll motifs of PML and SML, respectively. In

the second b-roll motif of PML, the sixth aspartic acid residue

of the RTX motif, which coordinates with the Ca2+ ion, is fully

conserved in all repeats. Nevertheless, the space between the

loops of the second and fourth RTX motifs is occupied by

water molecule, instead of Ca2+ ion. In the second b-roll motif

of SML, the sixth aspartic acid residue is replaced by Ala, Asn,

and Asn in the second, fourth, and sixth RTX motifs, respec-

tively. As a result, only three Ca2+ ions bind to only one side of

the b-roll motif.
It has previously shown that six functional RTX repeats are

enough to maintain the functionality and structural integrity

of PML [9]. In fact, some family I.3 lipases contain only six

RTX repeats [2]. Further deletion of the repeats or mutation

abolishes the repeats’ ability to form b-roll motif, and greatly

decreases secretion efficiency, proteolysis stability, and enzy-

matic activity [9,10]. These results allowed us to propose that

the b-roll motif has a chaperone-like function [2,12]. Because

the parallel b-sheet of one side of the first b-roll motif is ex-

tended to form a long parallel b-sheet with three b-strands

(b6–b8) of the lipase domain (Fig. 1A), formation of the first

b-roll motif is probably required to promote folding of the li-

pase domain. However, the first b-roll motif contains only five

RTX repeats, which are not sufficient for formation of a b-roll

motif. Therefore, formation of the b-roll sandwich may be re-

quired to stabilize the first b-roll motif. Further studies will be

necessary to elucidate the precise mechanism of the chaperone-

like function of the b-roll motif.
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