1,125 research outputs found

    Synchrotron Radiation from the Galactic Center in Decaying Dark Matter Scenario

    Full text link
    We discuss the synchrotron radiation flux from the Galactic center in unstable dark matter scenario. Motivated by the anomalous excess of the positron fraction recently reported by the PAMELA collaboration, we consider the case that the dark matter particle is unstable (and long-lived), and that energetic electron and positron are produced by the decay of dark matter. Then, the emitted electron and positron becomes the source of the synchrotron radiation. We calculate the synchrotron radiation flux for models of decaying dark matter, which can explain the PAMELA positron excess. Taking the lifetime of the dark matter of O(10^26 sec), which is the suggested value to explain the PAMELA anomaly, the synchrotron radiation flux is found to be O(1 kJy/str) or smaller, depending on the particle-physics and cosmological parameters.Comment: 20 pages, 6 figure

    Intrinsic vs. extrinsic anomalous Hall effect in ferromagnets

    Full text link
    A unified theory of the anomalous Hall effect (AHE) is presented for multi-band ferromagnetic metallic systems with dilute impurities. In the clean limit, the AHE is mostly due to the extrinsic skew-scattering. When the Fermi level is located around anti-crossing of band dispersions split by spin-orbit interaction, the intrinsic AHE to be calculated ab initio is resonantly enhanced by its non-perturbative nature, revealing the extrinsic-to-intrinsic crossover which occurs when the relaxation rate is comparable to the spin-orbit interaction energy.Comment: 5 pages including 4 figures, RevTex; minor changes, to appaer in Phys. Rev. Let

    Quantum phase gate for photonic qubits using only beam splitters and post-selection

    Get PDF
    We show that a beam splitter of reflectivity one-third can be used to realize a quantum phase gate operation if only the outputs conserving the number of photons on each side are post-selected.Comment: 6 pages RevTex, including one figur

    A second phase transition and superconductivity in the beta-pyrochlore oxide KOs2O6

    Full text link
    Another phase transition that is probably of first order is found in the beta-pyrochlore oxide superconductor KOs2O6 with a superconducting transition temperature Tc of 9.6 K. It takes place at Tp=7.5 K in the superconducting state in a zero magnetic field. By applying magnetic fields of up to 140 kOe, the Tc gradually decreased to 5.2 K, while Tp changed little, eventually breaking through the Hc2 line at approximately 65 kOe in the H-T diagram. Both the normal-state resistivity and Hc2 change slightly but significantly across the second phase transition. It is suggested that the transition is associated with the rattling of potassium ions located in an oversized cage of osmium and oxide ions.Comment: 10 pages including 6 figures; to be published in the Proceedings of HFM2006(J. Phys.: Condens. Matter

    Immersion Anomaly of Dirac Operator on Surface in R^3

    Full text link
    In previous report (J. Phys. A (1997) 30 4019-4029), I showed that the Dirac field confined in a surface immersed in R3R^3 by means of a mass type potential is governed by the Konopelchenko-Kenmotsu-Weierstrass-Enneper equation. In this article, I quantized the Dirac field and calculated the gauge transformation which exhibits the gauge freedom of the parameterization of the surface. Then using the Ward-Takahashi identity, I showed that the expectation value of the action of the Dirac field is expressed by the Willmore functional and area of the surface.Comment: AMS-Tex Us

    Enhanced dielectric response by disordered nanoscale/mesoscopic insulators

    Full text link
    Enhancement of the dielectric response of insulators by disorder is theoretically proposed, where the quantum interference of electronic waves through the nanoscale/mesoscopic system and its change due to external perturbations control the polarization. In the disordered case with all the states being localized, the resonant tunneling, which is topologically protected, plays a crucial role, and enhances the dielectric response by a factor 30~40 compared with the pure case. Realization of this idea with accessible materials/structures is also discussed.Comment: 4 pages including 3 figures; minor revision; a high-resolution figure available at http://appi.t.u-tokyo.ac.jp/~sonoda/papers.htm

    A Multi-scale Approach for Simulations of Kelvin Probe Force Microscopy with Atomic Resolution

    Full text link
    The distance dependence and atomic-scale contrast observed in nominal contact potential difference (CPD) signals recorded by KPFM on surfaces of insulating and semiconducting samples, have stimulated theoretical attempts to explain such effects. We attack this problem in two steps. First, the electrostatics of the macroscopic tip-cantilever-sample system is treated by a finite-difference method on an adjustable nonuniform mesh. Then the resulting electric field under the tip apex is inserted into a series of atomistic wavelet-based density functional theory (DFT) calculations. Results are shown for a realistic neutral but reactive silicon nano-scale tip interacting with a NaCl(001) sample. Bias-dependent forces and resulting atomic displacements are computed to within an unprecedented accuracy. Theoretical expressions for amplitude modulation (AM) and frequency modulation (FM) KPFM signals and for the corresponding local contact potential differences (LCPD) are obtained by combining the macroscopic and atomistic contributions to the electrostatic force component generated at the voltage modulation frequency, and evaluated for several tip oscillation amplitudes A up to 10 nm. Being essentially constant over a few Volts, the slope of atomistic force versus bias is the basic quantity which determines variations of the atomic-scale LCPD contrast. Already above A = 0.1 nm, the LCPD contrasts in both modes exhibit almost the same spatial dependence as the slope. In the AM mode, this contrast is approximately proportional to A−1/2A^{-1/2}, but remains much weaker than the contrast in the FM mode, which drops somewhat faster as A is increased. These trends are a consequence of the macroscopic contributions to the KPFM signal, which are stronger in the AM-mode and especially important if the sample is an insulator even at sub-nanometer separations where atomic-scale contrast appears.Comment: 19 pages, 13 figure

    Quantum filter for non-local polarization properties of photonic qubits

    Get PDF
    We present an optical filter that transmits photon pairs only if they share the same horizontal or vertical polarization, without decreasing the quantum coherence between these two possibilities. Various applications for entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources adde

    Nonexponential decay of an unstable quantum system: Small-QQ-value s-wave decay

    Full text link
    We study the decay process of an unstable quantum system, especially the deviation from the exponential decay law. We show that the exponential period no longer exists in the case of the s-wave decay with small QQ value, where the QQ value is the difference between the energy of the initially prepared state and the minimum energy of the continuous eigenstates in the system. We also derive the quantitative condition that this kind of decay process takes place and discuss what kind of system is suitable to observe the decay.Comment: 17 pages, 6 figure

    Neural-humoral responses during head-up tilt in healthy young white and black women

    Get PDF
    Young black women have higher prevalence of hypertension during pregnancy compared to white women, which may be attributable to differences in blood pressure (BP) regulation. We hypothesized that young normotensive black women would demonstrate augmented muscle sympathetic nerve activity (MSNA) and renal-adrenal responses to orthostasis. Fifteen white and ten black women (30 ± 4 vs. 32 ± 6 years; means ± SD) had haemodynamics and MSNA measured during baseline (BL), 30 and 60° head-up tilt (HUT), and recovery. Blood was drawn for catecholamines, direct renin, vasopressin, and aldosterone. BL brachial systolic BP (SBP: 107 ± 6 vs. 101 ± 9 mmHg) and diastolic BP (DBP: 62 ± 4 vs. 56 ± 7 mmHg) were higher in white women (both p < 0.05). Δ DBP (60° HUT-BL) was greater in black women compared to white (p < 0.05). Cardiac output and total peripheral resistance were similar between groups. MSNA burst frequency was higher in whites (BL: 16 ± 10 vs. 14 ± 9 bursts/min, main effect p < 0.05) and increased in both groups during HUT (60°: 39 ± 8 vs. 34 ± 13 bursts/min, p < 0.05 from BL). Noradrenaline was higher in white women during 60° HUT (60° HUT: 364 ± 102 vs. 267 ± 89 pg/ml, p < 0.05). Direct renin was higher and vasopressin and Δ aldosterone tended to be higher in blacks (BL, direct renin: 12.1 ± 5.0 vs. 14.4 ± 3.7 pg/ml, p < 0.05; BL, vasopressin: 0.4 ± 0.0 vs. 1.6 ± 3.6 pg/ml, p = 0.065; Δ aldosterone: −0.9 ± 5.1 vs. 3.8 ± 7.5 ng/ml; p = 0.069). These results suggest that young normotensive white women may rely on sympathetic neural activity more so than black women who have a tendency to rely on the renal-adrenal system to regulate BP during an orthostatic stress
    • 

    corecore