50 research outputs found

    CD146 is a potential immunotarget for neuroblastoma

    Get PDF
    Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to arise from neural crest-derived immature cells. The prognosis of patients with high-risk or recurrent/refractory neuroblastoma remains quite poor despite intensive multimodality therapy; therefore, novel therapeutic interventions are required. We examined the expression of a cell adhesion molecule CD146 (melanoma cell adhesion molecule [MCAM]) by neuroblastoma cell lines and in clinical samples and investigated the anti-tumor effects of CD146-targeting treatment for neuroblastoma cells both in vitro and in vivo. CD146 is expressed by 4 cell lines and by most of primary tumors at any stage. Short hairpin RNA-mediated knockdown of CD146, or treatment with an anti-CD146 polyclonal antibody, effectively inhibited growth of neuroblastoma cells both in vitro and in vivo, principally due to increased apoptosis via the focal adhesion kinase and/or nuclear factor-kappa B signaling pathway. Furthermore, the anti-CD146 polyclonal antibody markedly inhibited tumor growth in immunodeficient mice inoculated with primary neuroblastoma cells. In conclusion, CD146 represents a promising therapeutic target for neuroblastoma

    Efficacy of ME1036 against meticillin-resistant Staphylococcus aureus and vancomycin-insensitive S. aureus in a model of haematogenous pulmonary infection.

    Get PDF
    ME1036, a novel parenteral carbapenem, was developed for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate S. aureus (VISA). A model of haematogenous pulmonary infection was induced in mice by tail vein injection of MRSA strain NUMR101 or VISA Mu50 enmeshed in agar beads. After 24h of infection, mice were treated twice daily for 7 days with 200mg/kg/day vancomycin (VCM) or ME1036. Mice infected with VISA were also pre-treated with cyclophosphamide to induce an immunocompromised state. The number of viable bacteria in the lungs was counted 12h after the final drug treatment. VCM decreased the number of viable MRSA in the lungs in comparison with the control, although the difference was not significant (mean+/-standard error of the mean log(10) colony-forming units (CFU)/lung=6.876+/-0.54 vs. 8.25+/-0.41, respectively). In contrast, treatment with ME1036 resulted in a significant decrease in the number of viable MRSA (log(10)CFU/lung=2.69+/-0.44 (n=6); P3 log(10) reduction versus control against both MRSA strains (>5 log for the VCM-susceptible strain and 3.4 log for the VISA), whereas VCM produced <1.3 log for both strains

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Active vibration control of automobile drivetrain with backlash considering time-varying long control period

    Get PDF
    Active vibration control of automotive drivetrains must be developed to compensate for the backlash of gears because it causes undesired responses. In addition, an engine used as an actuator has a constraint which makes the control periods longer and time-varying, resulting in deterioration of the control performance. The contribution of this study is to cope with all the issues described above, backlash and the control period constraint, simultaneously. First, a basic experimental device, which simplifies an actual vehicle to focus on the effect due to backlash, is demonstrated. In the device, the control period constraint, which is equivalent to that of an engine, is reproduced by a digital signal processor. To reduce an adverse effect due to the extension of the control period, the sampled-data controller, which does not require discretization in its implementation, is employed. In this paper, predictive processing using the servo-type sampled-data controller is proposed to compensate for the phase delay of the control input caused by the time-varying control period. In addition, a control mode switching technique included in the prediction suppresses undesired responses due to backlash. Finally, control experiments verify the effectiveness of the control system
    corecore