118 research outputs found

    Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5

    Get PDF
    Either bulk rotation or local turbulence is widely invoked to drive fragmentation in collapsing cores so as to produce multiple star systems. Even when the two mechanisms predict different manners in which the stellar spins and orbits are aligned, subsequent internal or external interactions can drive multiple systems towards or away from alignment thus masking their formation process. Here, we demonstrate that the geometrical and dynamical relationship between the binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 yr indicate an orbital motion in the same sense as the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smaller than are observed, the remaining solutions favor a circular or low-eccentricity orbit tilted by up to \sim25^\circ from the circumstellar disks. Turbulence-driven fragmentation can generate local angular momentum to produce a coplanar binary system, but which bears no particular relationship with its surrounding envelope. Instead, the observed properties conform with predictions for rotationally-driven fragmentation. If the fragments were produced at different heights or on opposite sides of the midplane in the flattened central region of a rotating core, the resulting protostars would then exhibit circumstellar disks parallel with the surrounding envelope but tilted from the orbital plane as is observed.Comment: Accepted for publication in Ap

    Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. II. Observational Evidence for Outflow-Triggered Star Formation in the OMC-2 FIR 3/4 Region

    Full text link
    We have carried out the observations of the OMC-2 FIR 3/4 region with the NMA and ASTE in the H13^{13}CO+^{+} (1--0), 12^{12}CO (3--2, 1--0), SiO (vv=0, JJ=2--1), CS (2--1), and CH3_3OH (JKJ_K=7K_K--6K_K) lines and in the 3.3 mm continuum emission. Our NMA observations in the H13^{13}CO+^{+} emission have revealed 0.07 pc-scale dense gas associated with FIR 4. The 12^{12}CO (3--2,1--0) emission shows high-velocity blue and red shifted components at the both north-east and south-west of FIR 3, suggesting a molecular outflow nearly along the plane of the sky driven by FIR 3. The SiO and the CH3_{3}OH emission are detected around the interface between the outflow and the dense gas. Furthermore, the 12^{12}CO (1--0) emission shows an L-shaped structure in the P-V diagram. These results imply presence of the shock due to the interaction between the molecular outflow driven by FIR 3 and the dense gas associated with FIR 4. Moreover, our high angular-resolution observations of FIR 4 in the 3.3 mm continuum emission have first found that FIR 4 consists of eleven dusty cores. The separation among these cores is on the same order of the Jeans length, suggesting that the fragmentation into these cores has been caused by the gravitational instability. The time scale of the fragmentation is similar to the time scale of the interaction between the molecular outflow and the dense gas. We suggest that the interaction between the molecular outflow from FIR 3 and the dense gas associated with FIR 4 triggered the fragmentation into these dusty cores, and hence the next generation the cluster formation.Comment: 13 pages, 9 figures. Accepted by Ap

    Molecular Evolution in Collapsing Prestellar Cores

    Get PDF
    We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogues to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical and adsorption time scales. When the central density n_H of a prestellar core with the Larson-Penston flow rises to 3 10^6 cm^{-3}, the CCS and CO column densities are calculated to show central holes of radius 7000 AU and 4000 AU, respectively, while the column density of N2H+ is centrally peaked. These predictions are consistent with observations of L1544. If the dynamical time scale of the core is larger than that of the Larson-Penston solution owing to magnetic fields, rotation, or turbulence, the column densities of CO and CCS are smaller, and their holes are larger than in the Larson-Penston core with the same central gas density. On the other hand, N2H+ and NH3 are more abundant in the more slowly collapsing core. Therefore, molecular distributions can probe the collapse time scale of prestellar cores. Deuterium fractionation has also been studied via numerical calculations. The deuterium fraction in molecules increases as a core evolves and molecular depletion onto grains proceeds. When the central density of the core is n_H=3 10^6 cm^{-3}, the ratio DCO+/HCO+ at the center is in the range 0.06-0.27, depending on the collapse time scale and adsorption energy; this range is in reasonable agreement with the observed value in L1544.Comment: 21 pages, 17 figure

    New Panoramic View of 12^{12}CO and 1.1 mm Continuum Emission in the Orion A Molecular Cloud. I. Survey Overview and Possible External Triggers of Star Formation

    Get PDF
    We present new, wide and deep images in the 1.1 mm continuum and the 12^{12}CO (JJ=1-0) emission toward the northern part of the Orion A Giant Molecular Cloud (Orion-A GMC). The 1.1 mm data were taken with the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in Chile, and the 12^{12}CO (JJ=1-0) data were with the 25 beam receiver (BEARS) on the NRO 45 m telescope in the On-The-Fly (OTF) mode. The present AzTEC observations are the widest (\timeform{1.D7} ×\times \timeform{2.D3}, corresponding to 12 pc ×\times 17 pc) and the highest-sensitivity (\sim9 mJy beam1^{-1}) 1.1 mm dust-continuum imaging of the Orion-A GMC with an effective spatial resolution of \sim 40\arcsec. The 12^{12}CO (JJ=1-0) image was taken over the northern \timeform{1D.2} \times\timeform{1D.2} (corresponding 9 pc ×\times 9 pc) area with a sensitivity of 0.93 K in TMBT_{\rm MB}, a velocity resolution of 1.0 km s1^{-1}, and an effective spatial resolution of 21\arcsec. With these data, together with the MSX 8 μ\mum, Spitzer 24 μ\mum and the 2MASS data, we have investigated the detailed structure and kinematics of molecular gas associated with the Orion-A GMC and have found evidence for interactions between molecular clouds and the external forces that may trigger star formation. Two types of possible triggers were revealed; 1) Collision of the diffuse gas on the cloud surface, particularly at the eastern side of the OMC-2/3 region, and 2) Irradiation of UV on the pre-existing filaments and dense molecular cloud cores. Our wide-field and high-sensitivity imaging have provided the first comprehensive view of the potential sites of triggered star formation in the Orion-A GMC.Comment: 32 pages, 20 figures, accepted for publication in PAS

    Interaction between the Outflow and the Core in IRAM 04191+1522

    Full text link
    We have carried out mapping observations of the molecular core associated with the young Class 0 protostar, IRAM 04191+1522, in the CH3OH (JK=2K-1K) and C34S (J=2-1) lines using the 45 m telescope at Nobeyama Radio Observatory. As well as an elongated envelope associated with the protostellar formation (size \~0.07 pc x 0.04 pc, mass ~ 2.3 Mo), two compact (~ 0.03 pc) condensations were found in the CH3OH line at the southern edge of the elongated envelope, where the blueshifted CO outflow emerging from the protostar is located. In contrast to the elongated envelope, those compact CH3OH condensations show much larger line width (up to 2.0 km s-1) with centroid velocities blueshifted by ~ 0.8 km s-1. The compact condensations have momenta (~ 0.06 Mo km s-1) comparable to that of the blueshifted molecular outflow. These results suggest that the compact condensations are probably formed in the course of interaction between the outflow and the ambient gas surrounding the protostar, and that such interaction may cause dissipation of a part of the ambient gas. No drastic, localized enhancement of the CH3OH abundance is, however, observed toward the compact condensations, implying that there seems to be no significant shock heating at the compact condensations. This may be because the CO outflow velocity (< 10 km s-1) is too low to cause effective heating to release CH3OH on dust grains into gas phase.Comment: 22 pages, 7 gif figures, uses aastex.cl

    Co-existence of acute myeloid leukemia with multilineage dysplasia and Epstein-Barr virus-associated T-cell lymphoproliferative disorder in a patient with rheumatoid arthritis: a case report

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune disease mediated by inflammatory processes mainly at the joints. Recently, awareness of Epstein-Barr virus (EBV)-associated T-cell lymphoproliferative disorder (T-LPD) has been heightened for its association with methotraxate usage in RA patients. In the contrary, acute myeloid leukemia with multilineage dysplasia (AML-MLD) has never been documented to be present concomitantly with the above two conditions. In this report we present a case of an autopsy-proven co-existence of AML-MLD and EBV-associated T-LPD in a patient with RA

    O2-Filled Swimbladder Employs Monocarboxylate Transporters for the Generation of O2 by Lactate-Induced Root Effect Hemoglobin

    Get PDF
    The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b

    Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation

    Get PDF
    Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors

    Total syntheses of shizukaols A and E

    Get PDF
    Shizukaols possess a common heptacyclic framework containing more than ten contiguousstereocenters and potential biological activities. Here we report that the total syntheses ofshizukaols A (1)and E(2), two lindenane-type dimers from the Chloranthaceae family, areachieved via a modified biomimetic Diels–Alder reaction. The common crucial biomimetic diene23and ethylene species (6,17) are obtained through either a highlyZ-selective olefination ofα-siloxy ketone with ynolate anions or an intramolecular Horner–Wadsworth–Emmons olefinationfrom commercially available Wieland–Miescher ketone (7). This synthetic approach here opensup practical avenues for the total syntheses of the intriguing Chloranthaceae family members, aswell as the understanding of their relevant biological action in natur
    corecore