1,470 research outputs found

    Revisiting Critical Vortices in Three-Dimensional SQED

    Full text link
    We consider renormalization of the central charge and the mass of the N=2{\cal N}=2 supersymmetric Abelian vortices in 2+1 dimensions. We obtain N=2{\cal N}=2 supersymmetric theory in 2+1 dimensions by dimensionally reducing the N=1{\cal N}=1 SQED in 3+1 dimensions with two chiral fields carrying opposite charges. Then we introduce a mass for one of the matter multiplets without breaking N=2 supersymmetry. This massive multiplet is viewed as a regulator in the large mass limit. We show that the mass and the central charge of the vortex get the same nonvanishing quantum corrections, which preserves BPS saturation at the quantum level. Comparison with the operator form of the central extension exhibits fractionalization of a global U(1) charge; it becomes 1/2 for the minimal vortex. The very fact of the mass and charge renormalization is due to a "reflection" of an unbalanced number of the fermion and boson zero modes on the vortex in the regulator sector.Comment: 24 pages, 2 figures Minor modifications, reference adde

    A Remark on Supersymmetric Bubbles and Spectrum Crossover

    Full text link
    Using an exact expression for the domain wall tension in a supersymmetric model we show that a spectrum crossover takes place in passing from weak to strong coupling. In the weak coupling regime elementary excitations are the lightest states, while in the strong coupling regime solitonic objects of a special type -- bubbles -- assume the role of the lightest states. The crossover occurs at \lambda^2/(4\pi) \sim 0.4.Comment: 6 p., 1 fi

    Persistent Challenges of Quantum Chromodynamics

    Get PDF
    Unlike some models whose relevance to Nature is still a big question mark, Quantum Chromodynamics will stay with us forever. Quantum Chromodynamics (QCD), born in 1973, is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark-gluon matter at high densities/temperatures (neutron stars); the vast horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, etc. Efforts aimed at solving the underlying theory, QCD, continue. In a remarkable entanglement, theoretical constructions of the 1970s and 1990s combine with today's ideas based on holographic description and strong-weak coupling duality, to provide new insights and a deeper understanding.Comment: Julius Edgar Lilienfeld Prize Lecture at the April Meeting of APS, Dallas, TX, April 22-25, 2006; v.2: reference added; v.3: reference adde

    Supersymmetry Inspired QCD Beta Function

    Get PDF
    We propose an all orders beta function for ordinary Yang-Mills theories with or without fermions inspired by the Novikov-Shifman-Vainshtein-Zakharov beta function of N=1 supersymmetric gauge theories. The beta function allows us to bound the conformal window. When restricting to one adjoint Weyl fermion we show how the proposed beta function matches the one of supersymmetric Yang-Mills theory. The running of the pure Yang-Mills coupling is computed and the deviation from the two loop result is presented. We then compare the deviation with the one obtained from lattice data also with respect to the two loop running.Comment: 17 pages and 3 figures. References Adde

    The Three-Loop Lattice Free Energy

    Full text link
    We calculate the free energy of SU(N) gauge theories on the lattice, to three loops. Our result, combined with Monte Carlo data for the average plaquette, gives a more precise estimate of the gluonic condensate.Comment: 5 pages + 2 figures (PostScript); report no. IFUP-TH 17/9

    Quantum Fusion of Domain Walls with Fluxes

    Full text link
    We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.Comment: 17 pages, 3 figure

    Three-Loop Results on the Lattice

    Full text link
    We present some new three-loop results in lattice gauge theories, for the Free Energy and for the Topological Susceptibility. These results are an outcome of a scheme which we are developing (using a symbolic manipulation language), for the analytic computation of renormalization functions on the lattice.Comment: (Contribution to Lattice-92 conference). 4 page

    Comments on Diquarks, Strong Binding and a Large Hidden QCD Scale

    Full text link
    We present arguments regarding diquarks possible role in low-energy hadron phenomenology that escaped theorists' attention so far. Good diquarks, i.e. the 0+0^{+} states of two quarks, are argued to have a two-component structure with one of the components peaking at distances several times shorter than a typical hadron size (a short-range core). This can play a role in solving two old puzzles of the 't Hooft 1/N expansion: strong quark mass dependence of the vacuum energy density and strong violations of the Okubo-Zweig-Iizuka (OZI) rule in the quark-antiquark 0±0^\pm channels. In both cases empiric data defy 't Hooft's 1/N suppression. If good diquarks play a role at an intermediate energy scale they ruin 't Hoofts planarity because of their mixed-flavor composition. This new scale associated with the good diquarks may be related to a numerically large scale discovered in [V. Novikov, M. Shifman, A. Vainshtein and V. Zakharov, Nucl. Phys. B 191, 301 (1981)] in a number of phenomena mostly related to vacuum quantum numbers and 0±0^\pm glueball channels. If SU(3)color_{\rm color} of bona fide QCD is replaced by SU(2)color_{\rm color}, diquarks become well-defined gauge invariant objects. Moreover, there is an exact symmetry relating them to pions. In this limit predictions regarding good diquarks are iron-clad. If passage from SU(2)color_{\rm color} to SU(3)color_{\rm color} does not lead to dramatic disturbances, these predictions remain qualitatively valid in bona fide QCD.Comment: 18 pages, 3 figures; journal version, minor change
    corecore