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We propose an all orders beta function for ordinary Yang-Mills theories with or without fermions

inspired by the Novikov-Shifman-Vainshtein-Zakharov beta function of N ¼ 1 supersymmetric gauge

theories. The beta function allows us to bound the conformal window. When restricting to one adjoint

Weyl fermion we show how the proposed beta function matches the one of supersymmetric Yang-Mills

theory. The running of the pure Yang-Mills coupling is computed and the deviation from the two loop

result is presented. We then compare the deviation with the one obtained from lattice data also with

respect to the two loop running.
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I. INTRODUCTION

Inspired by the Novikov-Shifman-Vainshtein-Zakharov
(NSVZ) supersymmetric beta function [1–3] we propose
an all orders beta function for nonsupersymmetric gauge
theories with or without massless fermions transforming
according to arbitrary representations of the underlying
SUðNÞ gauge group. The beta function at small coupling
reduces to the two loop beta function. The form of the new
beta function allows us to bound the phase diagram for a
generic nonsupersymmetric gauge theory with fermionic
matter in a given, but otherwise arbitrary, representation of
the underlying gauge group. The result is simple, and we
compare it with the phase diagram presented in [4–6]
obtained using the truncated Schwinger-Dyson approxima-
tion also referred as ladder approximation in [7,8]. Further
studies of the nonsupersymmetric conformal window and
its properties can be found in [9–14].

We find that the ladder results provide a conformal
window systematically smaller than the one presented
here. The conformal windows we propose make use of
the new beta function and the condition of the absence of
negative norm states in a conformal field theory. The actual
size of the conformal window may be smaller than the one
presented here, which can be considered as a bound on the
size of the conformal window. In the supersymmetric case
this criterion provides, when extra checks can be per-
formed [15], the actual size of the conformal window.
The beta function is then generalized to the case of a gauge
theory with matter in different representations of the gauge
group.

We consider the specific case of a single massless Weyl
fermion in the adjoint representation which corresponds to
super Yang-Mills. By directly comparing our expression

with the super Yang-Mills result [1–3], we determine the
anomalous dimension of an adjoint fermion.
At infinite number of colors, a prediction of the beta

function was made in [16] for theories with matter in the
two-index symmetric and antisymmetric representation of
the gauge group and for Yang-Mills theory in [17]. Our
proposed supersymmetry-inspired beta function coincides
with these results at infinite number of colors. Another
attempt to produce the Yang-Mills beta function at large
N was recently made in [18].
The zero flavor limit, i.e. pure Yang-Mills, is a quite

interesting case since we can compare the running due to
the new beta function with lattice data for SUð2Þ, SUð3Þ,
and SUð4Þ [19–21]. We find the new beta function to
compare well with data, capturing the fact that the results
do not depend on the number of colors when plotting the
running of the ’t Hooft coupling. This result and the
comparison with data is rather encouraging.
We finally determine the ratio between the area of a

given conformal window to the associated asymptotically
free one and find that it is universal, i.e. does not depend on
the specific matter representation. A universal ratio was
found earlier in the supersymmetric case [6]. The ratio
assumes the same value in the supersymmetric and in the
nonsupersymmetric case. We then generalize the phase
diagram to the case of multiple matter representations
simultaneously affecting the gauge dynamics. Following
[6] we determine the size of the new conformal regions and
find a remarkably simple formula measuring the ratio of
conformal regions with respect to the associated asymp-
totically free regions. Universality manifests again since
the ratios depend only on how many representations are
considered but not which ones.
A relevant application lies in the physics beyond the

standard model. Minimal walking technicolor theories
[4,5,22,23] are interesting examples models for dynamical
breaking of the electroweak symmetry since they pass the
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electroweak precision tests. The walking dynamics was
first introduced in [24–30]. By walking one refers to the
fact that the underlying coupling constant decreases much
more slowly with the reference scale than in the case of
QCD-like theories. The very low number of flavors needed
to reach the conformal window, for certain representations,
makes the minimal walking theories amenable to lattice
investigations. Indeed, recent lattice results [31] show that
the theory with two Dirac fermions in the adjoint repre-
sentation of the SUð2Þ gauge group exhibits dynamics,
which is different from the one with fermions in the
fundamental representation. Our results may also be help-
ful in determining the physical spectrum of walking theo-
ries [32,33] relevant for electroweak physics [22].

Yet, another interesting application of our work is as a
study of the theoretical landscape underlying the unpar-
ticle physics world proposed by Georgi [34,35]. CP and
CPT properties of unparticle physics have been studied in
[36]. The theories presented here, belonging to the various
conformal regions, are natural candidates for a particle
description of the unparticle world following [37,38].

II. INTRODUCING THE NSVZ
SUPERSYMMETRIC BETA FUNCTION

The gauge sector of a supersymmetric SUðNÞ gauge
theory consists of a supersymmetric field strength belong-
ing to the adjoint representation of the gauge group. The
supersymmetric field strength describes the gluon and the
gluino. The matter sector is taken to be vectorial and to
consist of Nf chiral superfields� in the representation r of

the gauge group and Nf chiral superfields ~� in the con-

jugate representation �r of the gauge group. The chiral

superfield � (or ~�) contains a Weyl fermion and a com-
plex scalar boson.

The generators Tar , a ¼ 1 . . .N2 � 1 of the gauge group
in the representation r are normalized according to
Tr½Tar Tbr � ¼ TðrÞ�ab while the quadratic Casimir C2ðrÞ is
given by Tar T

a
r ¼ C2ðrÞI. The trace normalization factor

TðrÞ and the quadratic Casimir are connected via
C2ðrÞdðrÞ ¼ TðrÞdðGÞ where dðrÞ is the dimension of the
representation r. The adjoint representation is denoted by
G.

The exact beta function of supersymmetric QCD was
first found in [1,2] and further investigated in [39,40]. For a
given representation it takes the form

�ðgÞ ¼ � g3

16�2

�0 þ 2TðrÞNf�ðg2Þ
1� g2

8�2 C2ðGÞ
; (1)

�ðg2Þ ¼ � g2

4�2
C2ðrÞ þOðg4Þ; (2)

where g is the gauge coupling, �ðg2Þ is the anomalous
dimension of the mass [41], �0 ¼ 3C2ðGÞ � 2TðrÞNf is

the first beta function coefficient.

For the reader’s convenience in Table I we list the
explicit group factors for the representations used here. A
complete list of all of the group factors for any representa-
tion and the way to compute them is available in Table II of
[5] and the associated appendix [42].

III. NSVZ-INSPIRED NONSUPERSYMMETRIC
BETA FUNCTION

Consider now a generic nonsupersymmetric gauge the-
ory with Nf Dirac fermions in a given representation r of

the gauge group. The beta function to two loops reads

�ðgÞ ¼ � �0

ð4�Þ2 g
3 � �1

ð4�Þ4 g
5; (3)

where g is the gauge coupling and the beta function
coefficients are given by

�0 ¼ 11
3C2ðGÞ � 4

3TðrÞNf (4)

�1 ¼ 34
3C

2
2ðGÞ � 20

3C2ðGÞTðrÞNf � 4C2ðrÞTðrÞNf: (5)

To this order the two coefficients are universal, i.e. they do
not depend on which renormalization group scheme one
has used to determine them. The perturbative expression
for the anomalous dimension reads

�ðg2Þ ¼ 3

2
C2ðrÞ g

2

4�2
þOðg4Þ; (6)

with � ¼ �d lnm=d ln� and m the renormalized fermion
mass. It would be great to have the complete expression for
the beta function for a nonsupersymmetric theory. This
seems to be a formidable task. Inspired by supersymmetry
we suggest an all orders nonsupersymmetric beta function,
which has a number of interesting properties and predic-
tions that we will compare and test against nonperturbative
results found using various methods or models.
The first observation is that the perturbative anomalous

dimension depends on C2ðrÞ, which appears explicitly in
the last term of the second coefficient of the beta function.
We hence write the beta function in the following form:

�ðgÞ ¼ � g3

ð4�Þ2
�0 � 2

3TðrÞNf�ðg2Þ
1� g2

8�2 C2ðGÞð1þ 2�0
0

�0
Þ
; (7)

TABLE I. Relevant group factors for the representations used
throughout this paper. However, a complete list of all the group
factors for any representation and the way to compute them is
available in Table II and the appendix of [5].

r TðrÞ C2ðrÞ dðrÞ
h 1

2
N2�1
2N N

G N N N2 � 1
hh Nþ2

2
ðN�1ÞðNþ2Þ

N
NðNþ1Þ

2
h
h

N�2
2

ðNþ1ÞðN�2Þ
N

NðN�1Þ
2
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with

�0
0 ¼ C2ðGÞ � TðrÞNf: (8)

It is a simple matter to show that the above beta function
reduces to Eq. (3) when expanding to Oðg5Þ.

A. Generalization to multiple representations

The generalization for a generic gauge theory with
massless fermions in k different representations is

�ðgÞ ¼ � g3

ð4�Þ2
�0 � 2

3

P
k
i¼1 TðriÞNfðriÞ�i

1� g2

8�2 C2ðGÞð1þ 2�0
0

�0
Þ
; (9)

with

�0
0 ¼ C2ðGÞ �

Xk
i¼1

TðriÞNfðriÞ; (10)

and

�0 ¼ 11

3
C2ðGÞ � 4

3

Xk
i¼1

TðriÞNfðriÞ: (11)

IV. MATCHING TO EXACT RESULTS AND
LATTICE DATA

We now take different limits in theory space and, in
doing so, we will gain confidence on the validity of the
NVSZ-inspired beta function. We first recall how to relate
the gauge singlet bilinear fermion condensate at different
energy scales in the case of the canonically normalized
fermion kinetic term � ��D� :

h �  iQ ¼ exp

�Z Q

�
dg
�ðgÞ
�ðgÞ

�
h �  i�: (12)

Here �  is a gauge singlet operator and we have sup-
pressed the color and flavor indices. At the lowest order in
perturbation theory one obtains the simple formula:

h �  iQ ¼
�
gð�Þ2
gðQÞ2

�
3C2ðrÞ=�0h �  i�; (13)

with r the representation of the Dirac fermion  . By
construction and at the lowest order in perturbation theory
the operator

½gðQÞ2�3C2ðrÞ=�0h �  iQ; (14)

is renormalization group invariant.

A. Super Yang-Mills

Consider the theory with one single Weyl fermion trans-
forming according to the adjoint representation of the
gauge group. The beta function reads

�ðgÞ ¼ � g3

ð4�Þ2 3N
1� �Adj

9

1� g2

8�2
4N
3

; (15)

with �Adj the anomalous dimension of the fermion con-

densate. This theory corresponds to super Yang-Mills for
which we know the result [1,3]:

�SYMðgÞ ¼ � g3

ð4�Þ2
3N

1� g2

8�2 N
: (16)

In the NSVZ expression above there is no explicit appear-
ance of the anomalous dimension, while this is manifest in
Eq. (15). The absence of the anomalous dimension in the
NSVZ form of the beta function is due to the choice of
normalization of the gluino condensate which renders the
associated operator renormalization group invariant.
Assuming that the two beta functions have been computed
in the same renormalization scheme we can equate them.
This provides the expression for the anomalous dimension
of the fermion bilinear in the adjoint representation of the
gauge group normalized in the standard way:

�Adj ¼ g2

8�2

3N

1� g2

8�2 N
: (17)

Note that in our scheme we have that

g2ðQÞh��iQ; (18)

is a renormalization group invariant quantity to all orders.
This is exactly the definition of the gaugino condensate
used by NSVZ. One should also note that we do not only
recover the perturbative expression of �Adj when expand-

ing to Oðg2Þ but reproduce all of the higher orders in the
NSVZ scheme.

B. Planar equivalence

We now provide another independent check. Consider
one flavor in either the two-index symmetric or antisym-
metric representation of the SUðNÞ gauge group.
According to [16] at large N these two theories are planar
equivalent to SYM. For the two-index symmetric or anti-
symmetric representation the two coefficients appearing in
the beta function are

�0 ¼ 11

3
N � 4

3

N � 2

2
; �0

0 ¼ N � N � 2

2
: (19)

Retaining only the leading terms in N we find the beta
function to acquire the form in Eq. (15) with the anomalous
dimension of the two-index Dirac fermion to be identified
with the one of the gluino [16]. Hence, one recovers the
planar equivalence limit naturally with our form of the beta
function.
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C. Pure Yang-Mills and comparison with lattice data

Pure Yang-Mills is an excellent study case, since it has
been widely investigated in the literature, and much is
known, especially via lattice simulations. Setting the num-
ber of flavors to zero we have

�YMðgÞ ¼ � g3

ð4�Þ2
�0

1� g2

ð4�Þ2
�1

�0

; (20)

with

�0 ¼ 11N

3
; �1 ¼ 34N2

3
; (21)

respectively for the one and two loop coefficients of the
beta function. These are the only universal coefficients of a
generic beta function in any scheme. We now integrate the
above beta function and compare our running coupling
constant with the two loop result and find

� ¼ �1 exp

�
8�2

g2�0

�
ðg2�0Þ�1=2�

2
0 ; NSVZ-inspired

(22)

to be compared with the two loop beta function result:

� ¼ �2 exp

�
8�2

g2�0

�
ðg2�0Þ�1=2�

2
0

�
1þ g2

16�2

�1

�0

���1=2�
2
0

2 loops. (23)

Note that we have normalized the invariant scales �i in
such a way that they do not depend on the number of
colors. It is also clear that the two results do not depend
on the number of colors when considering g2N as the
coupling, i.e. the ’t Hooft coupling.

It is instructive to compare the deviation from the two
loop result of the NSVZ-inspired beta function with the
deviation of the lattice data also with respect to the two
loop one. In Fig. 1 we show the evolution of the ’t Hooft
coupling as a function of the energy scale and plot it
together with the two, three, and four colors lattice data.
The solid curve is obtained using the NSVZ-inspired

beta function, the dashed is obtained via the two loop beta
function while the dotted curve is the one loop result. The
green dots (biggest error bars) correspond to lattice data for
SUð2Þ taken from [19], the blue dots to SUð3Þ [20], and the
red dots (smallest error bars) to SUð4Þ [21]. Despite the
fact that the two renormalization schemes are different, the
size of the corrections with respect to the two loop coming
from the lattice data and the present beta function are
similar. We find this result encouraging.

V. IR FIXED POINT

As we decrease the number of flavors from just below
the point where asymptotic freedom is lost, corresponding
to

NI
f ¼

11

4

C2ðGÞ
TðrÞ ; (24)

one expects a perturbative zero in the beta function to occur
[43]. From the expression proposed above one finds that at
the zero of the beta function, barring zeros in the denomi-
nator, one must have

� ¼ 11C2ðGÞ � 4TðrÞNf
2TðrÞNf : (25)

The anomalous dimension at the IR fixed point is small for
a value of Nf such that

Nf ¼ NI
fð1� �Þ; with � > 0; (26)

and �� 1. Indeed, in this approximation we find

� ¼ 2�

1� �
� 1: (27)

It is also clear that the value of � increases as we keep
decreasing the number of flavors. Before proceeding, let us
also analyze in more detail the denominator of our beta
function. At the infrared fixed point we have

1� g2�
8�2

C2ðGÞ 12
�
5� 21

11�

�
; (28)

For very small � the denominator is positive while staying
finite as � approaches zero. The finiteness of the denomi-
nator is due to the fact that from the perturbative expression
of the anomalous dimension (valid for small epsilon) the
fixed point value of g� is

g2�
8�2

¼ �
2

3C2ðrÞ þOð�2Þ: (29)

1.00.5 2.00.2 5.0 10.0

4

6

8

10

µ Gev

g2
N

FIG. 1 (color online). The evolution of the gauge coupling
squared times the number of colors (i.e. the ’t Hooft coupling)
as a function of the energy scale for two, three and four colors.
The solid curve is obtained using the susy inspired beta function,
the dashed is obtained via the two loop beta function while the
dotted curve is the one loop result. The green dots (biggest error
bars) correspond to lattice data for SUð2Þ [19], the blue dots to
SUð3Þ [20], and the red dots (smallest error bars) to SUð4Þ [21].
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Since a perturbative fixed point does exist, we extend the
analysis to a lower number of flavors. The dimension of the
chiral condensate is Dð �  Þ ¼ 3� � which at the IR fixed
point value reads

Dð �  Þ ¼ 10TðrÞNf � 11C2ðGÞ
2TðrÞNf : (30)

To avoid negative norm states in a conformal field theory,
one must haveD � 1 for nontrivial spinless operators [44–
46]. Hence the critical number of flavors below which the
unitarity bound is violated according to the NSVZ-inspired
beta function is

NII
f ¼ 11

8

C2ðGÞ
TðrÞ ; (31)

which corresponds to having set � ¼ 2. One should note
that the analysis above is similar to the one done for
supersymmetric gauge theories [15]. However, the actual
size of the conformal window may be smaller than the one
presented here, which hence can be considered as a bound
on the size of the window. In Fig. 2 we plot the new phase
diagram. Our conformal bound in the case of fermions
transforming according to the fundamental representation
of the SUð3Þ gauge group predicts that a physical infrared
fixed point can be reached, in this case, for a number of
Dirac flavors larger than 8.25 which is larger than the one
found by Iwasaki et al. [47], which is around six.

A. Comparison with the ladder approximation

We now confront our bound of the conformal window
with the one obtained using the ladder approximation [5].
In the ladder approximation one finds

NII
fLadder ¼

17C2ðGÞ þ 66C2ðrÞ
10C2ðGÞ þ 30C2ðrÞ

C2ðGÞ
TðrÞ : (32)

This value is very crude [7,8]. Comparing with the NSVZ-
inspired result we see that it is the coefficient of
C2ðGÞ=TðrÞ which is different.
To better appreciate the differences between these two

results we plot the two conformal windows predicted
within these two methods in Fig. 3 for four types of
fermion representation.
The ladder result provides a size of the window, for

every fermion representation, smaller than the bound found
with our approach. This is a consequence of the value of
the anomalous dimension at the lower bound of the win-
dow. The unitarity constraint corresponds to � ¼ 2 while
the ladder result is closer to �� 1. Indeed if we pick � ¼ 1
our conformal window approaches the ladder result.
Incidentally, a value of � larger than 1, still allowed by
unitarity, is a welcomed feature when using this window to
construct walking technicolor theories. It allows for the
physical value of the mass of the top while avoiding a large
violation of flavor changing neutral currents [48] which
were investigated in [49] in the case of the ladder approxi-
mation for minimal walking models.

2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

N

N
f

FIG. 2 (color online). Phase diagram for nonsupersymmetric
theories with fermions in the: (i) fundamental representation
(black), (ii) two-index antisymmetric representation (blue),
(iii) two-index symmetric representation (red), (iv) adjoint rep-
resentation (green) as a function of the number of flavors and the
number of colors. The shaded areas depict the corresponding
conformal windows. Above the upper solid curve the theories are
no longer asymptotically free. Between the upper and the lower
solid curves the theories are expected to develop an infrared
fixed point according to the NSVZ-inspired beta function. The
dashed curve represents the change of sign in the second
coefficient of the beta function.
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FIG. 3 (color online). Phase diagram for nonsupersymmetric
theories with fermions in the: (i) fundamental representation
(black), (ii) two-index antisymmetric representation (blue),
(iii) two-index symmetric representation (red), (iv) adjoint rep-
resentation (green) as a function of the number of flavors and the
number of colors. The shaded areas depict the corresponding
conformal windows. Above the upper solid curve the theories are
no longer asymptotically free. In between the upper and the
lower solid curves the theories are expected to develop an
infrared fixed point according to the NSVZ-inspired beta func-
tion. The area between the upper solid curve and the dashed
curve corresponds to the conformal window obtained in the
ladder approximation.

SUPERSYMMETRY INSPIRED QCD BETA FUNCTION PHYSICAL REVIEW D 78, 065001 (2008)

065001-5



VI. RESIZING THE CONFORMALWINDOW:
A NEW UNIVERSAL RATIO

Georgi has recently proposed to couple a conformal
sector to the standard model [34]. In [6] we suggested a
measure of how large, in theory space, the fraction of the
unparticle world is. We assumed, following Georgi, the
unparticle sector to be described, at the underlying level,
by asymptotically free gauge theories developing an infra-
red fixed point. We showed that a reasonable measure is
then, for a given representation, the ratio of the area of the
conformal window to that of the total window for asymp-
totically free gauge theories

RFP ¼
R1
Nmin

NI
fdN � R1

Nmin
NII
f dNR1

Nmin
NI
fdN

; (33)

where Nmin is the smallest number of colors permitted for
the chosen representation.

Remarkably, the above ratio turned out to be universal,
i.e. independent of the matter representation, for anyN ¼
1 supersymmetric theory. The value being 1=2. Using the
NSVZ-inspired beta function for nonsupersymmetric theo-
ries we again find the same universal result:

RFP ¼
11
4 � 11

8
11
4

¼ 1

2
NSVZ-inspired. (34)

A generic gauge theory will, in general, have matter
transforming according to distinct representations of the
gauge group. We follow the analysis first performed in [6]
of the conformal region for a generic SUðNÞ gauge theory
withNfðriÞ vectorlike matter fields transforming according

to the representation ri with i ¼ 1; . . . ; k. We shall consider
the nonsupersymmetric case here and will use the NSVZ-
inspired beta function to determine the fraction of confor-
mal regions.

The generalization to k different representations for the
expression determining the region in flavor space above
which asymptotic freedom is lost is simply

Xk
i¼1

4

11
TðriÞNfðriÞ ¼ C2ðGÞ: (35)

Following [6] we estimate the region above which the
theories develop an infrared fixed point via the following
expression

Xk
i¼1

8

11
TðriÞNfðriÞ ¼ C2ðGÞ; (36)

The volume, in flavor and color space, occupied by a
generic SUðNÞ gauge theory is defined to be

V�½Nmin; Nmax� ¼
Z Nmax

Nmin

dN

�Yk
i¼1

Z C2ðGÞ�
P

i
j¼2

�TðrjÞNfðrjÞ=�Tðriþ1Þ

0

� Nfðriþ1Þ; (37)

with � reducing to the number 4=11 when the region to be
evaluated is associated to the asymptotically free one and
to 8=11 when the region is the one below which one does
not expect the occurrence of an infrared fixed point. The
notation is such that Tðrkþ1Þ 	 Tðr1Þ, Nfðrkþ1Þ 	 Nfðr1Þ
and the sum

P
i
j¼2 �TðrjÞNfðrjÞ in the upper limit of the

flavor integration vanishes for i ¼ 1. We defined the vol-
ume within a fixed range of number of colors Nmin and
Nmax.
Hence the fraction of the conformal region to the region

occupied by the asymptotically free theories is, for a given
number of representations k:

RFP ¼ V4=11½Nmin; Nmax� � V8=11½Nmin; Nmax�
V4=11½Nmin; Nmax�

¼ 1�
�
1

2

�
k
: (38)

Quite surprisingly the result obtained using the NSVZ-
inspired beta function does not depend on which represen-
tation one uses, but depends solely on the number k of
representations present. We recover 1=2 for k ¼ 1. We
estimated this ratio in the case of the ladder approximation
first in [6]. We noticed then a small dependence which,
however, can be related to the large uncertainty stemming
from the ladder approximation. The bound of the confor-
mal region is larger than the one computed using the ladder
approximation.

VII. CONCLUSIONS

We suggested an all orders beta function for ordinary
Yang-Mills theories with or without fermions inspired by
the NSVZ beta function of N ¼ 1 super gauge theories.
We computed the bound on the conformal regions and then
showed how the proposed beta function can be matched to
the NSVZ one for super Yang-Mills.
By setting the number of matter flavors to zero, one has

the Yang-Mills beta function for any number of colors.
Interestingly the latter depends only on the first two nu-
merical coefficients of the beta function which are univer-
sal according to ’t Hooft. The running of the ’t Hooft
coupling was computed and the deviation from the two
loop result presented. We then compared this with the
deviation of the lattice data also with respect to the two
loop running. We found the size of the two deviations to be
rather close.
Finally, we examined the ratio between the area of

conformal windows to the asymptotically free ones and
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showed that it is universal, i.e. does not depend on the
specific matter representation. A universal ratio was found
earlier in the supersymmetric case [6].

We caution the reader that we have not proven the
exactness of our beta function but we have checked various
limits when available. Even if it turns out that our beta
function is only an approximation to the exact expression it
can still be useful. For example, our beta function predicts
that an infrared fixed point is not achieved in QCD with
three light flavors, as suggested several times in the litera-
ture (see [50,51] for an example).
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Note added.—Since this paper has been submitted to the

journal, one of us, i.e. F. S., has shown by direct compari-
son with new lattice results, which also appeared after our
paper has been submitted to the journal, that not only our
prediction for the conformal window is still standing
strong, but, in fact, it is the only one which has a chance
to agree with all of the novel results [52]. Finally, in [52] it
was also shown how to use the novel beta function to make
a large number of physical predictions related to walking
technicolor and unparticle physics. For example, one can
show that there are essentially no nonsupersymmetric
theories that can be used to construct spinor unparticle.
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