24 research outputs found

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent

    Get PDF
    This study investigated the prospect of using aqueous mixture of 1-butylpyridinium tetrafluoroborate ([Bpy][BF4]) ionic liquid (IL) and monoethanolamine (MEA) as solvent in post-combustion CO2 capture (PCC) process. This is done by analysis of the process through modelling and simulation. In literature, reported PCC models with a mixture of IL and MEA solvent were developed using equilibrium-based mass transfer approach. In contrast, the model in this study is developed using rate-based mass transfer approach in Aspen Plus®. From the results, the mixed aqueous solvent with 5–30 wt% IL and 30 wt% MEA showed 7%–9% and 12%–27% less specific regeneration energy and solvent circulation rate respectively compared to commonly used 30 wt% MEA solvent. It is concluded that the IL concentration (wt%) in the solvent blend have significant impact on specific regeneration energy and solvent circulation rate. This study is a starting point for further research on technical and economic analysis of PCC process with aqueous blend of IL and MEA as solvent

    Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation

    No full text
    Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H2S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H2S capture. The effect of ionic liquid anions, cations, and functional groups on the H2S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed

    Fast Track to Acetate-Based Ionic Liquids: Preparation, Properties and Application in Energy and Petrochemical Fields

    No full text
    corecore