49 research outputs found

    Membrane transporters in drug development

    Get PDF
    Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling. © 2010 Macmillan Publishers Limited

    AAPS Workshop Report: Strategies to Address Therapeutic Protein–Drug Interactions during Clinical Development

    Get PDF
    Therapeutic proteins (TPs) are increasingly combined with small molecules and/or with other TPs. However preclinical tools and in vitro test systems for assessing drug interaction potential of TPs such as monoclonal antibodies, cytokines and cytokine modulators are limited. Published data suggests that clinically relevant TP-drug interactions (TP-DI) are likely from overlap in mechanisms of action, alteration in target and/or drug-disease interaction. Clinical drug interaction studies are not routinely conducted for TPs because of the logistical constraints in study design to address pharmacokinetic (PK)- and pharmacodynamic (PD)-based interactions. Different pharmaceutical companies have developed their respective question- and/or risk-based approaches for TP-DI based on the TP mechanism of action as well as patient population. During the workshop both company strategies and regulatory perspectives were discussed in depth using case studies; knowledge gaps and best practices were subsequently identified and discussed. Understanding the functional role of target, target expression and their downstream consequences were identified as important for assessing the potential for a TP-DI. Therefore, a question-and/or risk-based approach based upon the mechanism of action and patient population was proposed as a reasonable TP-DI strategy. This field continues to evolve as companies generate additional preclinical and clinical data to improve their understanding of possible mechanisms for drug interactions. Regulatory agencies are in the process of updating their recommendations to sponsors regarding the conduct of in vitro and in vivo interaction studies for new drug applications (NDAs) and biologics license applications (BLAs)

    A regulatory science viewpoint on botanical–drug interactions

    No full text
    There is a continued predisposition of concurrent use of drugs and botanical products. Consumers often self-administer botanical products without informing their health care providers. The perceived safety of botanical products with lack of knowledge of the interaction potential poses a challenge for providers and both efficacy and safety concerns for patients. Botanical–drug combinations can produce untoward effects when botanical constituents modulate drug metabolizing enzymes and/or transporters impacting the systemic or tissue exposure of concomitant drugs. Examples of pertinent scientific literature evaluating the interaction potential of commonly used botanicals in the US are discussed. Current methodologies that can be applied to advance our efforts in predicting drug interaction liability is presented. This review also highlights the regulatory science viewpoint on botanical–drug interactions and labeling implications. Keywords: Drug interaction, Botanical product, St. John's wort, Fruit juices, Regulatory scienc
    corecore