801 research outputs found

    Factors affecting wood, energy grass and straw pellet durability – A review

    Get PDF
    Pellets produced from wood, energy grasses and straw present a higher energy density feedstock than wood chips or bales, and therefore reduce the costs of handling, transport and storage throughout the supply chain. European specifications provide limits to the proportion of fines (particles less than 3.15 mm) allowed in pellets, which refers to the durability of the pellets. Fines have implications for health and safety in supply chains, and cause issues with slag formation in combustion systems. This paper reviews the factors affecting biomass pellet durability. The industrial trade for wood pellets has expanded greatly over the last decade and involves the international trade of tens of million tonnes annually. Due to increasing demands for pellets, there has been growing interest in utilising more varied biomass types. The aim of this review is to examine feedstock qualities and pelleting conditions that produce durable pellets. Pellet durability can be affected by the feedstock characteristics, the moisture content or size reduction during pre-processing, and by pelleting conditions, including the use of binders, feedstock mixes, temperatures or die pressures. Post-production conditions can also affect durability, such as the storage conditions and handling frequency, therefore an understanding of all the factors affecting durability throughout the supply chain is needed in order to prioritise where advances can be made

    Bioenergy from plants and the sustainable yield challenge

    Get PDF

    How well does Miscanthus ensile for use in an anaerobic digestion plant?

    Get PDF
    This study examined the ability for early-harvested Miscanthus (Miscanthus x giganteus and Miscanthus sacchariflorus) to be stored in silage for later use in anaerobic digestion. Two silage additives favouring a homo and hetero-fermentation pathway were examined. The results show that silage additives are necessary to effectively ensile Miscanthus, otherwise untreated Miscanthus grasses incurred dry matter losses of 4% during three months' storage. The silage additives improved the lactic and acetic acid production in the Miscanthus silages however did not have any effect on the biogas yield. On a ‘per tonne volatile solids’-basis, Miscanthus produces half the biogas yield of maize. The outlook for the use of Miscanthus AD therefore depends on the yield when harvested in autumn. A minimum yield of 19–26.5 t DM/ha is needed for Miscanthus to match the biogas production from a similar area of maize yielding 10–14 t DM/ha

    Hyperinsulinism-hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype-phenotype correlations

    Get PDF
    Background: Activating mutations in the GLUD1 gene (which encodes for the intra-mitochondrial enzyme glutamate dehydrogenase, GDH) cause the hyperinsulinism–hyperammonaemia (HI/HA) syndrome. Patients present with HA and leucine-sensitive hypoglycaemia. GDH is regulated by another intra-mitochondrial enzyme sirtuin 4 (SIRT4). Sirt4 knockout mice demonstrate activation of GDH with increased amino acid-stimulated insulin secretion. Objectives: To study the genotype–phenotype correlations in patients with GLUD1 mutations. To report the phenotype and functional analysis of a novel mutation (P436L) in the GLUD1 gene associated with the absence of HA. Patients and methods: Twenty patients with HI from 16 families had mutational analysis of the GLUD1 gene in view of HA (n=19) or leucine sensitivity (n=1). Patients negative for a GLUD1 mutation had sequence analysis of the SIRT4 gene. Functional analysis of the novel P436L GLUD1 mutation was performed. Results: Heterozygous missense mutations were detected in 15 patients with HI/HA, 2 of which are novel (N410D and D451V). In addition, a patient with a normal serum ammonia concentration (21 µmol/l) was heterozygous for a novel missense mutation P436L. Functional analysis of this mutation confirms that it is associated with a loss of GTP inhibition. Seizure disorder was common (43%) in our cohort of patients with a GLUD1 mutation. No mutations in the SIRT4 gene were identified. Conclusion: Patients with HI due to mutations in the GLUD1 gene may have normal serum ammonia concentrations. Hence, GLUD1 mutational analysis may be indicated in patients with leucine sensitivity; even in the absence of HA. A high frequency of epilepsy (43%) was observed in our patients with GLUD1 mutations

    A new Rothamsted long-term field experiment for the twenty-first century - principles and practice

    Get PDF
    Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors—phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems

    Towards stability of food production and farm income in a variable climate

    Get PDF
    Stable food production is vital for food security. Stability of farm income is also necessary to ensure the sustainability of food production and to protect livelihoods, in a changing climate. We analyse the relative effects of climate variability, subsidies and farming practices on the stability of food production and farm income. We examine farms in England and Wales between 2005 and 2017, and link farms to climate data at a sub-regional scale. Our results show that variability in temperature and rainfall reduces the stability of farm income and food production. While variability in climate can be largely outside of the farmers control our findings indicate that, under current conditions, farm management can have a larger effect on stability than climate. We identified three key aspects of farm management and policy that improve stability: i) increasing agricultural diversity, ii) increasing the efficiency of agrochemical use and iii) agri-environmental management. These management practices have previously been associated with benefits to natural ecosystems and may therefore increase the stability of agriculture whilst reducing negative impacts of farming on the environment. We also found differences in effect size of climate impacts and adaptation options between farm types, emphasising the need for flexible agricultural policies

    Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations

    Get PDF
    Objective: The phenotype associated with heterozygous HNF4A gene mutations has recently been extended to include diazoxide responsive neonatal hypoglycemia in addition to maturity-onset diabetes of the young (MODY). To date, mutation screening has been limited to patients with a family history consistent with MODY. In this study, we investigated the prevalence of HNF4A mutations in a large cohort of patients with diazoxide responsive hyperinsulinemic hypoglycemia (HH). Subjects and methods: We sequenced the ABCC8, KCNJ11, GCK, GLUD1, and/or HNF4A genes in 220 patients with HH responsive to diazoxide. The order of genetic testing was dependent upon the clinical phenotype. Results: A genetic diagnosis was possible for 59/220 (27%) patients. KATP channel mutations were most common (15%) followed by GLUD1 mutations causing hyperinsulinism with hyperammonemia (5.9%), and HNF4A mutations (5%). Seven of the 11 probands with a heterozygous HNF4A mutation did not have a parent affected with diabetes, and four de novo mutations were confirmed. These patients were diagnosed with HI within the first week of life (median age 1 day), and they had increased birth weight (median +2.4 SDS). The duration of diazoxide treatment ranged from 3 months to ongoing at 8 years. Conclusions: In this large series, HNF4A mutations are the third most common cause of diazoxide responsive HH. We recommend that HNF4A sequencing is considered in all patients with diazoxide responsive HH diagnosed in the first week of life irrespective of a family history of diabetes, once KATP channel mutations have been excluded

    METHOD OF MAKING QUASICRYSTAL ALLOY POWDER, PROTECTIVECOATINGS AND ARTICLES

    Get PDF
    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the meltis atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture

    Using a Crop Model to Benchmark Miscanthus and Switchgrass

    Get PDF
    Crop yields are important items in the economic performance and the environmental impacts of second-generation biofuels. Since they strongly depend on crop management and pedoclimatic conditions, it is important to compare candidate feedstocks to select the most appropriate crops in a given context. Agro-ecosystem models offer a prime route to benchmark crops, but have been little tested from this perspective thus far. Here, we tested whether an agro-ecosystem model (CERES-EGC) was specific enough to capture the differences between miscanthus and switchgrass in northern Europe. The model was compared to field observations obtained in seven long-term trials in France and the UK, involving different fertilizer input rates and harvesting dates. At the calibration site (Estrées-Mons), the mean deviations between simulated and observed crop biomass yields for miscanthus varied between −0.3 t DM ha−1 and 4.2 t DM ha−1. For switchgrass, simulated yields were within 1.0 t DM ha−1 of the experimental data. Observed miscanthus yields were higher than switchgrass yields in most sites and for all treatments, with one exception. Overall, the model captured the differences between both crops adequately, with a mean deviation of 0.46 t DM ha−1, and could be used to guide feedstock selections over larger biomass supply areas
    corecore