2,224 research outputs found
Two-dimensional matrix algorithm using detrended fluctuation analysis to distinguish Burkitt and diffuse large B-cell lymphoma
Copyright © 2012 Rong-Guan Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A detrended fluctuation analysis (DFA) method is applied to image analysis. The 2-dimensional (2D) DFA algorithms is proposed
for recharacterizing images of lymph sections. Due to Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), there
is a significant different 5-year survival rates after multiagent chemotherapy. Therefore, distinguishing the difference between BL
and DLBCL is very important. In this study, eighteen BL images were classified as group A, which have one to five cytogenetic
changes. Ten BL images were classified as group B, which have more than five cytogenetic changes. Both groups A and B BLs are
aggressive lymphomas, which grow very fast and require more intensive chemotherapy. Finally, ten DLBCL images were classified
as group C. The short-term correlation exponent α1 values of DFA of groups A, B, and C were 0.370 ± 0.033, 0.382 ± 0.022, and
0.435 ± 0.053, respectively. It was found that α1 value of BL image was significantly lower (P < 0.05) than DLBCL. However, there
is no difference between the groups A and B BLs. Hence, it can be concluded that α1 value based on DFA statistics concept can
clearly distinguish BL and DLBCL image.National Science Council (NSC) of Taiwan the Center for Dynamical Biomarkers and
Translational Medicine, National Central University, Taiwan (also sponsored by National Science Council)
Optimizing 4DCBCT Projection Allocation to Respiratory Bins
Four dimensional cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a ducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm signi cantly improves image quality in 4DCBCT images and provides, for the rst time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications
Respiratory Motion Guided Four Dimensional Cone Beam Computed Tomography: Encompassing Irregular Breathing
Four dimensional cone beam computed tomography (4DCBCT) images su er from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, Respiratory Motion Guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG- 4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient's respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 minute acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quanti ed streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-o image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C- arm CBCT systems, with an acceleration up to 200 degrees=s2, a velocity up to 100 degrees=s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 seconds. We have made considerable progress towards realising a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient
Thermoelastic Damping in Micro- and Nano-Mechanical Systems
The importance of thermoelastic damping as a fundamental dissipation
mechanism for small-scale mechanical resonators is evaluated in light of recent
efforts to design high-Q micrometer- and nanometer-scale electro-mechanical
systems (MEMS and NEMS). The equations of linear thermoelasticity are used to
give a simple derivation for thermoelastic damping of small flexural vibrations
in thin beams. It is shown that Zener's well-known approximation by a
Lorentzian with a single thermal relaxation time slightly deviates from the
exact expression.Comment: 10 pages. Submitted to Phys. Rev.
The First Implementation of Respiratory Triggered 4DCBCT on a Linear Accelerator
Four Dimensional Cone Beam Computed Tomography (4DCBCT) is an image guidance strategy used for patient positioning in radiotherapy. In conventional implementations of 4DCBCT, a constant gantry speed and a constant projection pulse rate are used. Unfortunately, this leads to higher imaging doses than are necessary because a large number of redundant projections are acquired. In theoretical studies, we have previously demonstrated that by suppressing redundant projections the imaging dose can be reduced by 40-50% for a majority of patients with little reduction in image quality. The aim of this study was to experimentally realise the projection suppression technique, which we have called Respiratory Triggered 4DCBCT (RT-4DCBCT). A real-time control system was developed that takes the respiratory signal as input and computes whether to acquire, or suppress, the next projection trigger during 4DCBCT acquisition. The CIRS dynamic thorax phantom was programmed with a 2cm peak-to-peak motion and periods ranging from 2 to 8 seconds. Image quality was assessed by computing the edge response width of a 3cm imaging insert placed in the phantom as well as the signal to noise ratio of the phantoms tissue and the contrast to noise ratio between the phantoms lung and tissue. The standard deviation in the Superior-Inferior direction of the 3cm imaging insert was used to assess intra-phase bin displacement variations with a higher standard deviation implying more motion blur. The 4DCBCT imaging dose was reduced by 8.6%, 41%, 54%, 70% and 77% for patients with 2, 3, 4, 6 and 8 second breathing periods respectively when compared to conventional 4DCBCT. The standard deviation of the intra-phase bin displacement variation of the 3cm imaging insert was reduced by between 13% and 43% indicating a more consistent position for the projections within respiratory phases. For the 4 second breathing period, the edge response width was reduced by 39% (0.8mm) with only a 6-7% decrease in the signal to noise and contrast to noise ratios. RT-4DCBCT has been experimentally realised and reduced to practice on a linear accelerator with a measurable imaging dose reductions over conventional 4DCBCT and little degradation in image quality
Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus.
During 1999 and 2000, a disease outbreak of West Nile (WN) virus occurred in humans, horses, and wild and zoological birds in the northeastern USA. In our experiments, WN virus infection of young domestic geese (Anser anser domesticus) caused depression, weight loss, torticollis, opisthotonus, and death with accompanying encephalitis and myocarditis. Based on this experimental study and a field outbreak in Israel, WN virus is a disease threat to young goslings and viremia levels are potentially sufficient to infect mosquitoes and transmit WN virus to other animal species
Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia
In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance
GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.
Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness
Estimating Grid-Induced Errors in CFD by Discrete-Error-Transport Equations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77113/1/AIAA-2004-656-838.pd
The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis.
A previous study showed that, in carriers of the apolipoprotein E (APOE) genotype ε3/ε3 or ε3/ε4, the presence of a very long (VL) polyT repeat allele in "translocase of outer mitochondrial membrane 40" (TOMM40) was less frequent in patients with sporadic inclusion body myositis (sIBM) compared with controls and associated with a later age of sIBM symptom onset, suggesting a protective effect of this haplotype. To further investigate the influence of these genetic factors in sIBM, we analyzed a large sIBM cohort of 158 cases as part of an International sIBM Genetics Study. No significant association was found between APOE or TOMM40 genotypes and the risk of developing sIBM. We found that the presence of at least 1 VL polyT repeat allele in TOMM40 was significantly associated with about 4 years later onset of sIBM symptoms. The age of onset was delayed by 5 years when the patients were also carriers of the APOE genotype ε3/ε3. In addition, males were likely to have a later age of onset than females. Therefore, the TOMM40 VL polyT repeat, although not influencing disease susceptibility, has a disease-modifying effect on sIBM, which can be enhanced by the APOE genotype ε3/ε3
- …