39 research outputs found

    Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1–xMnx)Cr2O4 spinel solid solutions, and its origin and implication

    Get PDF
    AbstractThe compressibility of the spinel solid solutions, (Mg1−xMnx)Cr2O4 with x = 0.00 (0), 0.20 (0), 0.44 (2), 0.61 (2), 0.77 (2) and 1.00 (0), has been investigated by using a diamond-anvil cell coupled with synchrotron X-ray radiation up to ∼10 GPa (ambient T). The second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding the following values for the isothermal bulk moduli (KT), 198.2 (36), 187.8 (87), 176.1 (32), 168.7 (52), 192.9 (61) and 199.2 (61) GPa, for the spinel solid solutions with x = 0.00 (0), 0.20 (0), 0.44 (2), 0.61 (2), 0.77 (2) and 1.00 (0), respectively (KT′ fixed as 4). The KT value of the MgCr2O4 spinel is in good agreement with existing experimental determinations and theoretical calculations. The correlation between the KT and x is not monotonic, with the KT values similar at both ends of the binary MgCr2O4MnCr2O4, but decreasing towards the middle. This non-monotonic correlation can be described by two equations, KT = −49.2 (11)x + 198.0 (4) (x ≤ ∼0.6) and KT = 92 (41)x + 115 (30) (x ≥ ∼0.6), and can be explained by the evolution of the average bond lengths of the tetrahedra and octahedra of the spinel solid solutions. Additionally, the relationship between the thermal expansion coefficient and composition is correspondingly reinterpreted, the continuous deformation of the oxygen array is demonstrated, and the evolution of the component polyhedra is discussed for this series of spinel solid solutions. Our results suggest that the correlation between the KT and composition of a solid solution series may be complicated, and great care should be paid while estimating the KT of some intermediate compositions from the KT of the end-members

    Lectures on holographic methods for condensed matter physics

    Full text link
    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009 and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.Comment: 1+85 pages. 15 figures. v2: typos fixed and references added. v3: another typo fixe

    Strength and texture of Pt compressed to 63 GPa

    No full text
    Angle-and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at similar to 60 GPa. Coarse-grained (similar to 2-mu m particles) Pt has a much lower yield strength of 1-1.5 GPa at similar to 60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed and texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell. (C) 2015 AIP Publishing LLC

    Equation of State of a Natural Chromian Spinel at Ambient Temperature

    No full text
    A natural chromian spinel with the composition (Mg0.48(3)Fe0.52(3))(Fe0.06(1)Al0.28(1)Cr0.66(2))2O4 was investigated up to 15 GPa via synchrotron X-ray diffraction with a diamond-anvil cell at room temperature. No phase transition was clearly observed up to the maximum experimental pressure. The pressure⁻volume data fitted to the third-order Birch⁻Murnaghan equation of state yielded an isothermal bulk modulus ( K T 0 ) of 207(5) GPa and its first pressure derivative ( K T 0 ′ ) of 3.2(7), or K T 0 = 202(2) GPa with K T 0 ′ fixed as 4. With this new experimental result and the results on some natural chromian spinels in the literature, a simple algorithm describing the relation between the K T 0 and the compositions of the natural chromian spinels was proposed. To examine this algorithm further, more compression experiments should be performed on natural chromian spinels with different chemical compositions

    Synthesis and equation of state of perovskites in the (Mg, Fe)(3)Al2Si3O12 system to 177 GPa

    No full text
    Natural and synthetic pyrope-almandine compositions from 38 to 100 mol% almandine (Alm38-Alm100) were studied by synchrotron X-ray diffraction in the laser-heated diamond anvil cell to 177 GPa. Single-phase orthorhombic GdFeO3-type perovskites were synthesized across the entire examined compositional range at deep lower mantle pressures, with higher Fe-contents requiring higher synthesis pressures. The formation of perovskite with Alm100 (Fe3Al2Si3O12) composition at 80 GPa marks the first observation of a silicate perovskite in a Fe end-member. Fe-enrichment broadens and lowers the pressure range of the post-perovskite transition for intermediate compositions such as Alm54, but the more Fe-rich Alm100-composition perovskite remains stable to pressures as high as 149 GPa. Volume compression data for the Alm54 and Alm100 compositions were fit to the Birch-Murnaghan equation of state. The compressibility of perovskites synthesized from compositions along the pyrope-almandine join is not strongly sensitive to Fe-content. The compression curves were smooth over the entire measured range, and no evidence for a volume anomaly associated with a spin transition was observed. (C) 2012 Elsevier B.V. All rights reserved

    Wheat data in environment 4.

    Get PDF
    <p>Upper left panel: average differences (over 100 cross-validations) between bagged GBLUP and GBLUP for predictive correlations (PCOR), mean-squared error (PMSE) and absolute value of differences (PABS) between prediction and realization at 10 values of the regularization parameter. Upper right, lower left and lower right panels give the three metrics for lambda values of 5, 100 and 400, respectively.</p
    corecore