25 research outputs found

    Response of Carex breviculmis to phosphorus deficiency and drought stress

    Get PDF
    IntroductionThe drought and phosphorus deficiency have inevitably become environmental issues globally in the future. The analysis of plants functional trait variation and response strategies under the stress of phosphorus deficiency and drought is important to explore their ability to respond to potential ecological stress.MethodsIn this study, Carex breviculmis was selected as the research object, and a 14-week pot experiment was conducted in a greenhouse, with two phosphorus treatment (add 0.5mmol/L or 0.05ÎĽmol/L phosphorus) and four drought treatment (add 0-5%PEG6000), totaling eight treatments. Biomass allocation characteristics, leaf anatomical characteristics, biochemical parameters, root morphology, chemical element content, and photosynthetic parameters were measured.ResultsThe results showed that the anatomical characteristics, chemical elements, and photosynthetic parameters of Carex breviculmis responded more significantly to main effect of phosphorus deficiency. Stomatal width, leaf phosphorus content and maximum net photosynthetic rate decreased by 11.38%, 59.39%, 38.18% significantly (p<0.05), while the change in biomass was not significant (p>0.05). Biomass allocation characteristics and root morphology responded more significantly to main effect of drought. Severe drought significantly decreased leaf fresh weight by 61% and increased root shoot ratio by 223.3% compared to the control group (p<0.05). The combined effect of severe drought and phosphorus deficiency produced the highest leaf N/P ratio (291.1% of the control) and MDA concentration (243.6% of the control). Correlation analysis and redundancy analysis showed that the contributions of phosphorus and drought to functional trait variation were similar. Lower epidermal cell thickness was positively correlated with maximum net photosynthetic rate, leaf phosphorus, chlorophyll ab, and leaf fresh weight (p<0.05).DiscussionIn terms of response strategy, Carex breviculmis was affected at the microscopic level under phosphorus deficiency stress, but could maintain the aboveground and underground biomass well through a series of mechanisms. When affected by drought, it adopted the strategy of reducing leaf yield and improving root efficiency to maintain life activities. Carex breviculmis could maintain its traits well under low phosphorus and moderate drought, or better conditions. So it may have good ecological service potential in corresponding areas if promoted. This study also provided a reference for plant response to combined drought and phosphorus deficiency stresses

    Modification of sodium dodecyl sulfate and evaluation of foaming activity

    Get PDF
    In this study, to optimize the foaming activity of sodium dodecyl sulfate (SDS), modified sodium dodecyl sulfate surfactants (MSDS-1 and MSDS-2) are prepared by using methanol and diethanol amine as modifiers by the Mannich reaction. The foaming properties and foam stability of the products are evaluated by the Ross–Miles method and the Waring blender method. The microstructures of the foams produced by three surfactants are compared. The effects of temperature, inorganic salt, methanol, and condensate oil on the foaming activity of SDS, MSDS-1, and MSDS-2 are studied. The results obtained show that the best foaming concentration of all three products is 0.5%. Compared with SDS, the temperature resistance, methanol resistance, salt resistance and anti-condensate oil performance of MSDS-1 and MSDS-2 are improved. Among them, the temperature resistance, salt resistance, and methanol resistance of the MSDS-1 solution are the best. The MSDS-2 solution has the best anti-condensate performance. Besides, the foam size becomes smaller, the foam wall thickens, and the foam stability is improved after modification. The overall performance of SDS as a foaming agent can be improved by the Mannich modification

    Modification of sodium dodecyl sulfate and evaluation of foaming activity

    Get PDF
    In this study, to optimize the foaming activity of sodium dodecyl sulfate (SDS), modified sodium dodecyl sulfate surfactants (MSDS-1 and MSDS-2) are prepared by using methanol and diethanol amine as modifiers by the Mannich reaction. The foaming properties and foam stability of the products are evaluated by the Ross–Miles method and the Waring blender method. The microstructures of the foams produced by three surfactants are compared. The effects of temperature, inorganic salt, methanol, and condensate oil on the foaming activity of SDS, MSDS-1, and MSDS-2 are studied. The results obtained show that the best foaming concentration of all three products is 0.5%. Compared with SDS, the temperature resistance, methanol resistance, salt resistance and anti-condensate oil performance of MSDS-1 and MSDS-2 are improved. Among them, the temperature resistance, salt resistance, and methanol resistance of the MSDS-1 solution are the best. The MSDS-2 solution has the best anti-condensate performance. Besides, the foam size becomes smaller, the foam wall thickens, and the foam stability is improved after modification. The overall performance of SDS as a foaming agent can be improved by the Mannich modification

    Evaluation of Ecological Vulnerability and Analysis of Its Spatiotemporal Evolution Based on the Fuzzy Comprehensive Evaluation/Catastrophe Progression Method: A Case Study of the Danjiang River Basin (Henan Section)

    No full text
    In recent years, with the implementation of the South-to-North Water Diversion Project, the land use problem and its ecological effects on the Danjiang River Basin (DRB), which is a water source in the project, have become some of the focal points of current research in ecology and environmental science. Selecting the DRB (Henan section) as the study area, an ecological vulnerability evaluation model based on the fuzzy comprehensive evaluation/catastrophe progression method was constructed to evaluate the ecological vulnerability of the study area. The spatiotemporal evolution patterns of ecological vulnerability in the study area were quantitatively analyzed, and the main evolutionary drivers were identified by using GeoDetector. The results showed that: (1) the ecological vulnerability of the DRB (Henan section) was mainly moderate and mild, with areas of 2535.26 km2 and 2717.33 km2, respectively, by 2020, accounting for 30.14% and 32.30%, respectively, of the total area of the basin, with an overall vulnerability distribution characteristic of “low in the north and high in the south”; (2) the ecological vulnerability indices of the DRB (Henan section) in 2000, 2010, and 2020 were 0.56, 0.61, and 0.58, indicating that the ecological quality first decreased and then increased; and (3) the influence of vegetation factors on ecological vulnerability was large, with explanatory power above 4%. The influence of economic pressures and surface factors on ecological vulnerability gradually increased. This study can provide a reference for ecological environmental protection in the water source of the middle route of the South-to-North Water Diversion Project

    Evaluation of Ecological Vulnerability and Analysis of Its Spatiotemporal Evolution Based on the Fuzzy Comprehensive Evaluation/Catastrophe Progression Method: A Case Study of the Danjiang River Basin (Henan Section)

    No full text
    In recent years, with the implementation of the South-to-North Water Diversion Project, the land use problem and its ecological effects on the Danjiang River Basin (DRB), which is a water source in the project, have become some of the focal points of current research in ecology and environmental science. Selecting the DRB (Henan section) as the study area, an ecological vulnerability evaluation model based on the fuzzy comprehensive evaluation/catastrophe progression method was constructed to evaluate the ecological vulnerability of the study area. The spatiotemporal evolution patterns of ecological vulnerability in the study area were quantitatively analyzed, and the main evolutionary drivers were identified by using GeoDetector. The results showed that: (1) the ecological vulnerability of the DRB (Henan section) was mainly moderate and mild, with areas of 2535.26 km2 and 2717.33 km2, respectively, by 2020, accounting for 30.14% and 32.30%, respectively, of the total area of the basin, with an overall vulnerability distribution characteristic of “low in the north and high in the south”; (2) the ecological vulnerability indices of the DRB (Henan section) in 2000, 2010, and 2020 were 0.56, 0.61, and 0.58, indicating that the ecological quality first decreased and then increased; and (3) the influence of vegetation factors on ecological vulnerability was large, with explanatory power above 4%. The influence of economic pressures and surface factors on ecological vulnerability gradually increased. This study can provide a reference for ecological environmental protection in the water source of the middle route of the South-to-North Water Diversion Project

    Multifunctional Composites Obtained by Incorporating Nanocrystals into Decorated PVK Polymers

    No full text
    Poly(vinylcarbazole) (PVK) was decorated with surfactant group to achieve amphiphilic polymer with luminescent property. The composition and properties of the polymers were systematically investigated using FTIR, EA, TGA, UV-Vis, and PL characterizations. Different CdTe nanocrystals (NCs) prepared in aqueous medium were directly transferred to organic phase using the PVK-based polymers. The quantum yield of NCs in the composites had been improved by 50% compared with their parent aqueous solution due to the short distance from carbazole moieties to NCs, which facilitated the Förster resonant energy transfer (FRET) between them. Moreover, efficient electron transfer at the interface of NCs and polymers had been confirmed which also indicated the application in photovoltaic cell for such composites

    Heparin anticoagulation versus regional citrate anticoagulation for membrane therapeutic plasma exchange in patients with increased bleeding risk

    No full text
    AbstractBackground Heparin anticoagulation (HA) is commonly employed for membrane therapeutic plasma exchange (mTPE). However, for patients with increased bleeding risk, there were controversial opinions on the use of HA versus regional citrate anticoagulation (RCA) for mTPE. Our present study aimed to evaluate the efficacy and safety of HA vs. RCA for mTPE in patients with increased bleeding risk.Methods Patients with increased bleeding risk who underwent mTPE between 2014 and 2021 in our center were screened. Observations of anticoagulation efficacy and safety were used as the study endpoints.Results A total of 108 patients with 368 mTPE sessions were included. Of the included patients, 38 and 70 received HA and RCA mTPE, respectively. There was no significant difference in the clotting of extracorporeal circuits between the HA and RCA groups (4.1% vs. 4.4%, p = 0.605). More bleeding episodes were observed in the HA group compared to the RCA group (16.4% vs. 4.4% mTPE sessions, p < 0.001). The frequency of postoperative transfusion within 24 h (11% vs. 3.4%, p = 0.007) was significantly different in the HA and RCA group. Anticoagulation strategy (HA vs. RCA; OR 5.659, 95%CI 2.266–14.129; p < 0.001), and mean arterial pressure (prior treatment, OR 1.052, 95%CI 1.019–1.086; p = 0.002) were independent risk factors of bleeding episodes. At the end of mTPE treatment, the incidence of metabolic alkalosis (16.7% vs. 54.1%, p = 0.027) and hypocalcemia (41.7% vs. 89.2%, p = 0.001) was significantly different in the HA (n = 5, 12 sessions) and RCA (n = 22, 74 sessions) groups, respectively.Conclusion RCA is as effective as HA for mTPE. However, for patients with increased bleeding risk, RCA is associated with a lower risk of bleeding, compared with HA. With careful monitoring and timely adjustment, RCA most likely is a safe and effective anticoagulation option for mTPE in patients with increased bleeding risk

    Integrated transcriptome and 16S rDNA analyses reveal that acute heat stress induces intestinal damage in Gymnocypris eckloni

    Get PDF
    Gymnocypris eckloni (G. eckloni), a cold-water economic fish, is widely cultivated in southwestern China. The increase in extreme summer weather conditions owing to global warming can significantly affect their survival and health. The fish intestine and its microbiota are closely associated with fish feeding and growth, nutritional metabolism, and immune defense. However, the mechanisms underlying the changes in the G. eckloni intestine and its microbiota under acute heat stress remain unknown. In this study, we investigated the effects of acute heat stress on the G. eckloni intestine employing histology, plasma biochemical indices, transcriptomics, and 16S rDNA sequencing. Histological analysis showed that acute heat stress induced significant morphological damage to the intestine, with microvilli detachment and mitochondrial abnormalities in the ultrastructure. Biochemical indicators associated with stress (reactive oxygen species and catalase), inflammation (interleukin-1β and tumor necrosis factor-α), and intestinal permeability (diamine oxidase and lipopolysaccharide) were significantly elevated after acute heat stress, indicating an intestinal inflammatory response and disruption of barrier function. Many DEGs were mined by transcriptomic analysis, with tfrc, pfkp, egln1 enriched in the HlF-1 signaling pathway, hsp70, hsp90aa1 and hspa4 enriched in the Antigen processing and presentation pathway, pmm1, pfkfb3 and hk1 enriched in the Fructose and mannose metabolism patyway. The HIF-1 signaling pathway is a crucial regulatory pathway during acute heat stress in the G. eckloni intestine, while significant downregulation of genes associated with adaptive immunity (mica, hla-dpa1, hla-dpb1, and hla-dqb2) suggested impaired immune function. Additionally, the composition of the intestinal microbiota was dominated by Aeromonas, Citrobacter, and Acinetobacter in the control group; but there was a significant decrease in the abundance of Citrobacter and Acinetobacter, and a significantly increased in Shewanella and Hafnia-Obesumbacterium after acute heat stress. Correlation analyses revealed that changes in the abundance of Hafnia-Obesumbacterium, Buttiauxella, and Pseudomonas were closely associated with changes in gene expression associated with stress, inflammation, and immunity. These results comprehensively demonstrate the adaptive mechanisms of the G. eckloni intestine in response to acutely high temperatures and provide a theoretical basis for the future advancement of artificial culture of cold-water fish
    corecore