42 research outputs found

    Performance Evaluation of Triple band Microstrip Antenna using Hybrid SRRs on Fractal Ground Plane

    Get PDF
    A single-band monopole antenna, transformed into a triple-band antenna for S-band and C-band applications is reported in this paper. This transformation is done with the help of two different hybrid SRR unit cells, which are embedded on the truncated ground plane of the antenna. These hybrid SRR unit cells are created by combining square split ring and circular split ring into two different configurations. Simulated results are in coherence with the measured results and analysis is provided to evaluate the efficacy of the design. This analysis can be used to estimate the usefulness of metamaterial unit cells in generating multiple frequency bands. The operating frequency bands measured are 2.72-2.83GHz, 3.54-4.35 GHz, and 4.72-5 GHz respectively. These bands are being used in the mid-band frequency range of 5G communication in many countries. The developed antenna is miniaturized to the size of 0.19位0 脳0.25位0 (位0 is the free space wavelength at 2.72 GHz). Two objectives i.e., miniaturization and multi-banding are fulfilled in a single design. The introduction of different hybrid SRR unit cells at defective ground plane causes multi-banding and resonance of a unit cell at a lower frequency leads to an increase in the effective electrical length of the antenna without increasing its physical size. The metamaterial characteristic of the unit cells is also verified in the article

    UWB Channel Characterization for Compact L-Shape Configurations for Body-Centric Positioning Applications

    Get PDF
    This paper presents an analysis on the body-centric channel parameters classification for various compact 3 base station L-Shape configurations utilizing only a 2D-plane for installation. Four different L-Shape configurations (x-z/y-z plane) are studied (facing-front/side/back) by varying the position of the base stations in an indoor environment. Results and analyses highlight the variation of the channel parameters with respect to the orientation of the base station configurations and presence of the human subject. Channel parameters values (peak power delay profile (PDP)/rms delay spread sigma/Kurtosis) are reported for (line of sight (LOS): -65 to -50 dB/0.5-5 nsec/40-60) and (non-line of sight (NLOS): -80 to -65 dB/ 10-25 nsec/ 5-25). The 3D localisation accuracy obtained is highest (1-3 cm) for the x-z plane L-Shape configuration facing-front which has maximum number of LOS links (70%).The accuracy decreases by 1-2 cm for the x-z plane L-Shape configuration facing-back due to increase in NLOS links (70%) between the wearable antennas and the base stations

    Millimeter wave and optical dielectric integrated guides and circuits

    No full text

    Scanning the Issue

    No full text

    Scanning the Issue

    No full text

    Scanning the Issue

    No full text

    Scanning the Issue

    No full text

    Scanning the Issue

    No full text

    Scanning the Issue

    No full text
    corecore