29 research outputs found

    Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environments

    Get PDF
    Composite shells, which are being widely used in engineering applications, are often under thermal loads. Thermal loads usually bring thermal stresses in the structure which can significantly affect its static and dynamic behaviors. One of the possible solutions for this matter is embedding Shape Memory Alloy (SMA) wires into the structure. In the present study, thermal buckling and free vibration of laminated composite cylindrical shells reinforced by SMA wires are analyzed. Brinson model is implemented to predict the thermo-mechanical behavior of SMA wires. The natural frequencies and buckling temperatures of the structure are obtained by employing Generalized Differential Quadrature (GDQ) method. GDQ is a powerful numerical approach which can solve partial differential equations. A comparative study is carried out to show the accuracy and efficiency of the applied numerical method for both free vibration and buckling analysis of composite shells in thermal environment. A parametric study is also provided to indicate the effects of like SMA volume fraction, dependency of material properties on temperature, lay-up orientation, and pre-strain of SMA wires on the natural frequency and buckling of Shape Memory Alloy Hybrid Composite (SMAHC) cylindrical shells. Results represent the fact that SMAs can play a significant role in thermal vibration of composite shells. The second goal of present work is optimization of SMAHC cylindrical shells in order to maximize the fundamental frequency parameter at a certain temperature. To this end, an eight-layer composite shell with four SMA-reinforced layers is considered for optimization. The primary optimization variables are the values of SMA angles in the four layers. Since the optimization process is complicated and time consuming, Genetic Algorithm (GA) is performed to obtain the orientations of SMA layers to maximize the first natural frequency of structure. The optimization results show that using an optimum stacking sequence for SMAHC shells can increase the fundamental frequency of the structure by a considerable amount

    Up-Regulation of Interleukin-17 Expression by Human Papillomavirus Type 16 E6 in Nonsmall Cell Lung Cancer

    No full text
    BACKGROUND: Human papillomavirus (HPV) 16/18 infection is associated with nonsmoking lung cancer. In this study, the authors investigated a putative correlation between interleukin (IL)-17 expression and HPV infection in clinical nonsmall cell lung cancer (NSCLC) tissues and examined the effects of HPV infection on a human NSCLC cell line. METHODS: IL-17 expression was investigated in 79 NSCLC tumor tissues by immunohistochemistry. Growth rate, IL-17 mRNA, and secreting protein levels were also examined in HPV 16/18 E6-transfected H1299 human NSCLC cells. RESULTS: Immunohistochemical data showed that 48.1% of lung tumors had IL-17 staining, which was significantly associated with patients' sex (P=.03), HPV infection (P=.002), and tumor stage (P=.03). Significant correlations of IL-17 with IL-6 (P<.001) and IL-17 with Mcl-1 (P<.001) expression were also observed. Cell growth rate was increased, and IL-17/Mcl-1 expression levels were elevated in HPV 16 E6-transfected H1299 cells. The transfected E6 oncoproteins can significantly up-regulate expression levels of IL-17 and antiapoptotic protein Mcl-1. CONCLUSIONS: The study suggests that HPV infection-induced IL-17 levels can stimulate Mcl-1 expression through the PI3K pathway and promote lung tumor cell progression through a p53-and IL-6-independent pathway. Cancer 2010; 116: 4800-9. (C) 2010 American Cancer Society
    corecore