24,693 research outputs found

    Strong and Electromagnetic Decays of The DD-wave Heavy Mesons

    Full text link
    We calculate the π\pi, ρ\rho, ω\omega, and γ\gamma coupling constants between the heavy meson doublets (1,2)(1^-,2^-) and (0^-,1^-)/(0^+,1^+) within the framework of the light-cone QCD sum rule at the leading order of heavy quark effective theory. Most of the sum rules are stable with the variations of the Borel parameter and the continuum threshold. Then we calculate the strong and electromagnetic decay widths of the (1,2)(1^-,2^-) D-wave heavy mesons. Their total widths are around several tens of MeV, which is helpful in the future experimental search.Comment: 20 pages, 13 figure

    The global geometrical property of jet events in high-energy nuclear collisions

    Full text link
    We present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity (SS_{\perp}) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG+PYTHIA is employed to make an accurate description of transverse sphericity in the p+p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb+Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small SS_{\perp} region but a suppression at large SS_{\perp} region are observed in A+A collisions as compared to their p+p references, which indicates that in overall the geometry of jet events in Pb+Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with 3\ge 3~jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p+p.Comment: 9 pages, 9 figure

    Generalized Hofstadter model on a cubic optical lattice: From nodal bands to the three-dimensional quantum Hall effect

    Get PDF
    We propose that a tunable generalized three-dimensional Hofstadter Hamiltonian can be realized by engineering the Raman-assisted hopping of ultracold atoms in a cubic optical lattice. The Hamiltonian describes a periodic lattice system under artificial magnetic fluxes in three dimensions. For certain hopping configurations, the bulk bands can have Weyl points and nodal loops, respectively, allowing the study of both the two nodal semimetal states within this system. Furthermore, we illustrate that with proper rational fluxes and hopping parameters, the system can exhibit the three-dimensional quantum Hall effect when the Fermi level lies in the band gaps, which is topologically characterized by one or two nonzero Chern numbers. Our proposed optical-lattice system provides a promising platform for exploring various exotic topological phases in three dimensions.Comment: 10 pages, 5 figure

    Demonstration of Geometric Landau-Zener Interferometry in a Superconducting Qubit

    Get PDF
    Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a superconducting phase qubit. We experimentally demonstrate Landau-Zener interferometry based on the pure geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.Comment: 5 pages + 3 pages supplemental Materia

    Nonadiabatic Geometric Quantum Computation Using A Single-loop Scenario

    Get PDF
    A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally, a so-called multi-loop approach is used to remove the dynamical phase accumulated in the operation process for geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in other physical systems.Comment: 4 pages, 3 figure
    corecore