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A single-loop scenario is proposed to realize nonadiabatic geometric quantum computation. Conventionally,
a so-called multiloop approach is used to remove the dynamical phase accumulated in the operation process for
geometric quantum gates. More intriguingly, we here illustrate in detail how to use a special single-loop
method to remove the dynamical phase and thus to construct a set of universal quantum gates based on the
nonadiabatic geometric phase shift. The present scheme is applicable to NMR systems and may be feasible in
other physical systems.
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Quantum computers have been attracting more and more
interests as they are illustrated to be capable of tackling ef-
ficiently certain problems that are intractable for classical
computers [1]. Significant progress has recently been
achieved in the field of quantum computing. Nevertheless,
there are still many difficulties and challenges in physical
implementation of quantum computation. The infidelity of
quantum gates is one of them; to suppress the infidelity to a
acceptable level is essential to construct workable quantum
logical gates in a scalable quantum computer. Recently, a
promising approach based on geometric phases[2–4] was
proposed to achieve built-in fault-tolerant quantum gates
with higher fidelities[5–10] since the geometric phase de-
pends only on the global feature of the evolution path and is
believed to be robust against local fluctuations. The geomet-
ric quantum computation(GQC) and its physical implemen-
tation were addressed for NMR systems[8,9], Josephson
junctions[6,10], and trapped ions[7].

Theoretically, under the so-called adiabatic condition, one
can construct a pure geometric phase quantum gate based on
an adiabatic geometric phase[8]. However, the adiabatic
condition is not satisfied in many realistic cases because the
long operation time is required, and thus it is hard to experi-
mentally realize quantum computation with adiabatic evolu-
tions, particularly for solid-state systems whose decoherence
time is quite short. To overcome this disadvantage, it was
proposed to use the nonadiabatic cyclic geometric phase(AA
phase) to construct geometric quantum gates[9,10]. These
gates have not only the faster gate-operation time, but also
intrinsic geometric features of the geometric phase. For a
nonadiabatic cyclic evolution, the total phase difference be-
tween the final and initial states usually consists of both the
geometric and dynamical phases. Therefore, to get the nona-
diabatic geometric phase, we need to remove the dynamical
component. An interesting idea is to choose the cyclic evo-
lution in dark states[7]: dark states have a zero energy ei-
genvalue for the effective Hamiltonian, and thus its dynami-
cal phase will always be zero during the evolution. Another
useful method to remove the dynamical phase is a so-called

multiloop scheme[8,10,11], in which the evolution is driven
by the Hamiltonian along several closed loops. The dynami-
cal phases accumulated in different loops may be canceled,
while the geometric phases are added.

In this paper, we propose a simple single-loop scheme to
realize a set of universal quantum gates based nonadiabatic
geometric phase shifts. In this scheme, the dynamic phase
can be removed in the designed cyclic evolution, with only
the geometric phase being accumulated in gate operations.
Comparing with the existing multiloop geometric approach,
the present scenario may simplify the gate operation and
shorten the gate-operation time, which appears to be a dis-
tinct advantage for experimentally implementing geometric
quantum computation.

Before we present our scheme, let us first summarize how
to construct a single-qubit gate using cyclic evolutions[11].
For a qubit system, consider two orthogonal cyclic states
uc+l and uc−l, which satisfy the relation Ustduc±l
=exps±igduc±l, whereg is the total phase accumulated and
Ustd is the evolution operator of a cyclic evolution witht as
the periodicity. We can write uc+l=e−isf/2d cosx/2u↑ l
+eisf/2d sinx/2u↓ l and uc−l=−e−isf/2d sinx/2u↑ l
+eisf/2d cosx/2u↓ l, where (x, f) are the spherical coordi-
nates of the state vector on the Bloch sphere(Fig. 1), u↑ l and
u↓ l are the two eigenstates of thez component of the spin-
1/2 operator(sz/2) and they constitute the computational
basis for the qubit. For an arbitrary input state denoted as
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FIG. 1. The closed path ABCDA for the geometric single-qubit
gate. The BC and DA are on the geodesic paths on which the dy-
namical phase is always zero.

PHYSICAL REVIEW A 71, 014302(2005)

1050-2947/2005/71(1)/014302(4)/$23.00 ©2005 The American Physical Society014302-1



ucinl=a+uc+l+a−uc−l with a±=kc± ucinl, after the cyclic evo-
lution for the uc+l suc−ld state, the output state isucoutl
=Usg ,x ,fducinl, where

U =1eig cos2
x

2
+ e−ig sin2x

2
ie−if sin g sin x

ieif sin g sin x eig sin2x

2
+ e−ig cos2

x

2
2 .

s1d

If ever we can let theg be a pure geometric phase, thisU
gate is a geometric quantum gate because it depends only on
the geometric phaseg (and the initial coordinates of the state
uc+l) under the operation, even though an input state of a
superposition of the two cyclic states may have a nonzero
dynamical phase after the gate operation; this feature is a
distinct merit in the proposed geometric quantum gates. The
discussions on the robustness of the proposed geometric
gates can be found in Ref.[12].

We now illustrate schematically how to realize the above
pure geometric phase gate. In Fig. 1, we plot a cyclic evolu-
tion path (ABCDA) on the Bloch sphere surface; a qubit
state corresponds a point on it. Note that the state vector
along the BC and DA curves takes the geodesic path on the
Bloch sphere. The dynamical phases accumulated on these
two curves are always zero. Since the AB and CD curves are
symmetric with respect to the X-Y plane, when the state
vector evolves along the two curves as indicated in Fig. 1,
the dynamical phases should be canceled exactly in the pres-
ence of az-axis magnetic field.

At this stage, we choose the point A in Fig. 1 to be the
uc+l. In order to ensure that the stateuc+l suc−ld evolves
cyclically, with the accumulated dynamical phase being zero,
we manipulate the magnetic field as follows. A constant
magnetic fieldB is first applied along thez axis during the
time t1=sp /2vd. The corresponding Hamiltonian in this pe-
riod may be written asH1=sm /2dB ·s=sv /2dsz, where v
=mB. Next from the point B, the magnetic fieldB2 is chosen
along thex axis duringt2=sp /v2d with v2=mB2, and the
Hamiltonian becomesH2=sv2/2dsx. Then from the point C,
the magnetic fieldB is reapplied to thez axis during the
period t3=p /2v, and H3=sv /2dsz. Finally, we choose the
magnetic fieldB2 along they axis for t4=p−2x /v2, and
thus H4=−sv2/2dsy. In this series oft1, t2, t3, andt4, the
uc+l state evolves along the paths AB, BC, CD, and DA on
the Bloch sphere, and finally returns to the starting point A to
form a single loop. The dynamical phase accumulated in this
cyclic evolution is written as

gd = −E
0

t1

kcABuH1ucABldt −E
0

t3

kcCDuH3ucCDldt. s2d

BecausekcABuH1ucABl=−kcCDuH3ucCDl, the accumulated
dynamical phasegd=0. Meanwhile, the geometric phase,
which is half of the area enclosed in the path spanned by the
Bloch vector, is found to be −sp /2d. As a result, the designed
evolution operator for any input state reads

Usxd = e−iH4t4e−iH3t3e−iH2t2e−iH1t1=S− i cosx − i sin x

− i sin x i cosx
D .

s3d

This is indeed a geometric gate withg=gg=−sp /2d in Eq.
(1).

As is well known, to achieve a set of universal quantum
gates, we need to construct two noncommutable single-qubit
gates and one nontrivial two-qubit gate. Once we choose, for
example,x=p /4 andx=p /3 in Eq. (3), respectively, it is
straightforward to verify thatUsx1=p /4d and Usx2=p /3d
are noncommuting. Therefore, the two noncommutable
single-qubit gates can be constructed based on nonadiabatic
geometric phases.

It is also interesting to note that the loops corresponding
to x=0 andx=p /2 are very special, on which dynamical
phases are always zero; thus they are intrinsically geometric
closed paths. Obviously, the corresponding two geometric
quantum gates( −isz and −isx) are also noncommuting as
well.

We now turn to achieve a nontrivial two-qubit gate. Let us
consider a typical two-qubit system, like NMR[13], de-
scribed by the following Hamiltonian with a simple interac-
tion between two qubits:

H = svasz
a + vbsz

b + pJsz
asz

bd/2, s4d

where a and b denote two qubits, respectively, andJ is a
coupling constant. If we apply an accessory fieldva8 to the
qubit a with va8=sva−pJd, then the effective Hamiltonian of
the qubit a will become Ha=sva−va8±pJdsz

a/2
=spJ±pJdsz

a/2, in which ± corresponds to up and down
states of the qubitb. When the qubitb is in the stateu↑ lb,
Ha=pJsz

a; while if the qubitb in the stateu↓ lb, Ha=0. This
important property can be used to realize a controlled two-
qubit gate based on nonadiabatic geometric phases using the
similar scenario as that used in Ref.[13].

We first consider the controlled qubitb to be in the state
u↑ lb. As shown in Fig. 2, we choose the arctic point on the
Bloch sphere as theuc+l state of qubita (point A in Fig. 2),
i.e., uc+la= u↑ la. In the first step, a magnetic fieldB is applied
on the qubita along they-axis and the interaction is turned

FIG. 2. The evolution paths on the Bloch sphere for a geometric
two-qubit gate. When the qubitb is in the stateu↑ l, the stateuc+la

completes a cyclic evolution on the ABCDA. If the qubitb is in the
stateu↓ l, the uc+la can be manipulated either to evolve along the
ABE or to be unchanged.
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off. The effective Hamiltonian of the qubita is Hs1d
=vsy/2. After the timet1=p /2v, the state of qubita is in
the statesÎ2/2dsu↑ la+ u↓ lad (point B). Then, the magnetic
field is removed and the interaction is turned on for the time
t2=1/2J. The effective Hamiltonian of the qubita in this
period is Hs2d=pJsz

a. After this evolution along the path
BCD in Fig. 2, the state changes tos−Î2i /2dsu↓ la− u↑ lad.
Next, we turn off the interaction again and apply the mag-
netic field along they axis as in the first step for the time
t3=p /2v, the final state of qubita becomes the state
e−ip/2u↑ la. From the whole process described above, it is
clearly seen thatuc+la has experienced a cyclic evolution
with the closed path ABCDA on the Bloch sphere:

u↑la⇀ sÎ2/2dsu↓la + u↑lad⇀ s− Î2i/2dsu↓la − u↑lda⇀ e−ip/2u↑la.
The total phaseg=−p /2 is just the geometric phase shift
accumulated because the evolution path is geodesic and the
dynamical phase is zero.

Next we consider the qubitb to be in the stateu↓ lb. As we
indicated before, the effective Hamiltonian of the qubita in
the above second periodt2 is zerofHs2d=0g. Thus, theuc+la

takes the evolutionu↑ la⇀ sÎ2/2dsu↓ la+ u↑ lda⇀ u↓ la under
the above operation process. The evolution path on the Bloch
sphere corresponds the ABE path, on which no dynamical
phase is accumulated. As a result, we have the time evolution
operatorU2std for the present two-qubit system, such that
U2stdu↑ lau↑ lb=e−ip/2u↑ lau↑ lb, U2stdu↓ lau↑ lb=eip/2u↓ lau↑ lb,
U2stdu↑ lau↓ lb= u↓ lau↓ lb, and U2stdu↓ lau↓ lb=−u↑ lau↓ lb. In
the basis ofu↑ lau↑ lb, u↓ lau↑ lb, u↑ lau↓ lb, u↓ lau↓ lb, the matrix
form of the evolution operator of this two-qubit system is
written as

U2 =1
− i 0 0 0

0 i 0 0

0 0 0 − 1

0 0 1 0
2 . s5d

Since the output state of the qubita depends on the state
of the qubitb, as shown in Fig. 3, it is seen that the aboveU2
obviously denotes a nontrivial two-qubit gate.

Alternatively, if the effective field on the qubita can be
turned off once the qubitb in the u↓ l state,Ha=0 in the
whole process, as that can be manipulated in the NMR ex-

periment[14] where a line-selective pulse is used(to ensure
that the effective field can be applied on the qubita by sat-
isfying the resonant condition only if the qubitb in the state
u↑ l). Therefore, for the operation(on the qubita for the case
u↑ lbd corresponding to the path ABCDA in Fig. 2, we have

U28 =1
− i 0 0 0

0 i 0 0

0 0 1 0

0 0 0 1
2 . s6d

This is a nontrivial conditional geometric phase gate(two
qubit) [8,11]. Moreover, when the qubita is manipulated as
in Fig. 1 (for the caseu↑ lb), we can achieve a more general
controlledU gate as

U2
9 =1Usxd

0 0

0 0

0 0

0 0

1 0

0 1
2 . s7d

Finally, we wish to clarify that the robustness of the pro-
posed geometric gates will depend on the state accurately
undergoing a cyclic excursion, which may be perturbed by
the fluctuations in rather strong control fields. Nevertheless,
in most experimental systems, the effective fields can be con-
trolled with high accuracy, particularly in NMR-like systems,
where the effective fields to appear in Hamiltonian(4) are
just the oscillating frequencies of the nucleus and the applied
pulses; these frequencies can be controlled very accurately.
Therefore, serious errors in the control fields may be avoided
in many experimental systems. Even though there may be
some unavoided noises in control fields, the proposed geo-
metric gates are still robust against certain types of noises
due to the nonuniformity of the control parameter, as illus-
trated in Ref.[12].

In conclusion, we have proposed a single-loop scheme to
construct a set of universal quantum gates based on nonadia-
batic geometric phases. Comparing with the existing multi-
loop methods, our scheme using the singleloop to remove the
dynamical phase is interesting and valuable in physical
implementation of geometric quantum computation because
it may simplify the gate operation and shorten the gate-
operation time. The present scheme is applicable to NMR
systems and may be feasible in other physical systems,
which would stimulate experimental interests in implement-
ing nonadiabatic geometric quantum computation.

We are grateful to J. Du and Q. Han for helpful discus-
sions. This work was supported by the RGC Grant of Hong
Kong (HKU7114/02P), the URC fund and the CRCG Grant
of HKU, the NSFC under Grant Nos. 10204008 and
10429401, and the NSF of Guangdong under Grant No.
021088,.

FIG. 3. Schematic diagram of a nonadiabatic two-qubit gate.
The output state of the qubita depends on the state of controlled
qubit b.
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