16 research outputs found

    Isolation, identification, molecular docking analysis, and cytoprotection of seven novel angiotensin I-converting enzyme inhibitory peptides from miiuy croaker byproducts-swim bladders

    Get PDF
    For efficiently utilizing the processing byproducts of miiuy croaker to prepare novel angiotensin I-converting enzyme (ACE) inhibitory (ACEi) peptides, in vitro gastrointestinal (GI) digestion method was screened and employed to prepare swim bladder hydrolysate with the highest ACEi activity. Subsequently, seven novel ACEi peptides were isolated from the hydrolysate and identified as DEGPE, EVGIQ, SHGEY, GPWGPA, GPFGTD, SPYGF, and VIGPF with molecular weights of 545.49, 544.58, 591.55, 583.63, 592.59, 569.60, and 531.63 Da, respectively. SHGEY and SPYGF exhibited remarkable ACEi activity with IC50 values of 0.86 ± 0.12 and 0.37 ± 0.06 mg/mL. Molecular docking experiment illustrated that the significant ACEi activity of SHGEY and SPYGF with the affinity of -8.7 and -9.7 kcal/mol mainly attributed to effectively combining with the ACEi active sites by hydrophobic interaction, electrostatic force and hydrogen bonding. Moreover, SHGEY and SPYGF could significantly up-regulate the nitric oxide (NO) production and decrease the endothelin-1 (ET-1) secretion in human umbilical vein endothelial cells (HUVECs), but also abolished the negative impacting of norepinephrine to the levels of NO and ET-1. Furthermore, SHGEY and SPYGF showed significant protection to HUVECs against H2O2 damage by increasing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity to lower the contents of reactive oxide species and malondialdehyde. Consequently, ACEi peptides derived from miiuy croaker swim bladders, especially SHGEY and SPYGF, are health-promoting ingredients for functional products as a supplementary treatment to hypertension and cardiovascular diseases

    An Empirical Study of Artificial Intelligence Performance on Edge Devices

    No full text
    Artificial intelligence (AI) workloads have changed the computing paradigm from cloud services to mobile applications. However, there lacks an in-depth analysis of their advantages, limitations, performance and resource consumptions in an edge environment. In this work, we perform a comprehensive study of representative AI workloads on edge computing. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate the AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. Our experiments show that performance variation and difference in resource footprint limit availability of certain types of workload. Our results could help user select the appropriate AI models or edge hardwares for their workloads and guide the optimization of existing AI scenarios

    Systematical Investigation on Anti-Fatigue Function and Underlying Mechanism of High Fischer Ratio Oligopeptides from Antarctic Krill on Exercise-Induced Fatigue in Mice

    No full text
    High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body’s energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods

    Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill (Euphausia superba) Proteins

    No full text
    For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6–8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products

    Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle

    No full text
    To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 μM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases

    Blood donation and health status based on SF-36: The mediating effect of cognition in blood donation.

    No full text
    OBJECTIVE:The relationship among blood donation, cognition in blood donation and health condition of blood donors remains unclear. Based on our hypothesis, this study aimed to explore the mediating effect of cognition in blood donation on the relationship between blood donation and blood donors' health status. METHODS:A total of 837 participants who had prior experience in donating whole blood were recruited into a cross-sectional survey. The Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) and the Questionnaire on Cognition in Non-remunerated Blood Donation were used to evaluate the health status and the level of cognition in blood donation, respectively. Blood donation referred to the cumulative times of blood donation. The mediating effect of cognition in blood donation was analyzed by applying a path model. RESULTS:The results revealed that blood donation was positively related to the physical component summary (PCS) and mental component summary (MCS) of SF-36, and cognition in blood donation was shown to have a partial mediating effect on the relationship between blood donation and both PCS and MCS. The effect size of cognition in blood donation was 24.63% in PCS and 26.72% in MCS. CONCLUSIONS:Blood donation is positively correlated with SF-36 outcomes (PCS and MCS) of blood donors, and cognition in blood donation plays a partial mediating effect in the relationship between blood donation and PCS and MCS

    Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction

    No full text
    We investigated the dependence of cations and anions of ionic liquids (ILs) on catalytic activity for the synthesis of dimethyl carbonate (DMC) via the transesterification of ethylene carbonate (EC) with methanol (CH3OH), and demonstrated that an easily prepared carboxylic functionalized imidazolium salt exhibited higher activity, 82% yield of DMC together with 99% selectivity was obtained under the metal-free and halogen-free conditions. The reaction mechanism was also proposed according to experimental and DFT studies. In addition, in order to simplify the catalyst separation and evaluate the catalyst stability, we also covalently anchored the functionalized imidazolium salt onto a highly cross-linked polystyrene resin (PS) as a heterogeneous catalyst for DMC synthesis, and continuously performed the reaction in a fixed bed reactor for 200 h without obvious loss of activity, which would have potential applications in industry. The process thus represented an environmentally friendly pathway for the synthesis of DMC via a transesterification reaction

    Emerging Cu‐Based Tandem Catalytic Systems for CO2 Electroreduction to Multi‐Carbon Products

    No full text
    Abstract Conversion of carbon dioxide (CO2) to valuable chemicals and feedstocks through electrochemical reduction holds promise for achieving carbon neutrality and mitigating global warming. C2+ products are of interest due to their higher economic value. Since the CO2 to C2+ conversion process involves multiple steps, tandem catalytic strategies are commonly employed in the design of electrochemical CO2 reduction reaction (CO2RR) catalysts and systems/reactors. Among the diverse catalysts that are capable of reducing CO2 to CO, Cu stands out for more efficiently further converting CO to C2+ products. In this review, the emerging Cu‐based tandem catalysts and their impact on CO2RR performance, focusing on three positional relationships are summarized. It delves into the integration of tandem catalytic strategies into membrane electrolyzers, utilizing catalyst‐coated substrate (CCS) and catalyst‐coated membrane (CCM) technologies. Several typical examples are presented to illustrate this integration. Finally, the challenges and prospects of applying tandem strategies in the development of CO2RR catalysts/systems, as well as their device‐level implementation are indicated

    Atomic Cobalt Vacancy-Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting

    No full text
    Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non-metal sulfur/oxygen defects, which have often overlooked metallic vacancies. Herein, evidence is provided that cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms. The coalescence of Co vacancy clusters at the surface of an IrCo alloy results in an increased d-band level and eventually compromises H adsorption, leading to enhanced electrocatalytic activity toward the hydrogen evolution reaction. In addition, the Co vacancy clusters can improve the electronic conductivity with respect to the oxidized Co surface, which substantially aids in strengthening the adsorption of oxygen intermediates toward an effective oxygen evolution reaction at a low overpotential. These collective effects originate from the Co vacancy cluster and specifically enable highly efficient and stable water splitting with a low total overpotential of 384 mV in alkaline media and 365 mV in an acidic environment, achieving a current density of 10 mA cm . –
    corecore