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Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental 

processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of 

Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions 

(CAGS-Fe, CAGS-Cu and CAGS-Zn) and one basalt (CAGS-Basalt). These materials exhibit sufficient 

homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were 

determined by inter-laboratory analytical comparisons involving up to eight participating laboratories employing 

MC-ICP-MS techniques, based on the unweighted means of submitted results. Isotopic compositions are 

reported in per mil notation, based on reference materials IRMM-014 for Fe, NIST SRM 976 for Cu and 

IRMM-3702 for Zn. Respective reference values of CAGS-Fe, CAGS-Cu and CAGS-Zn solutions are as 

follows: δ56Fe = 0.83 ± 0.06 and δ57Fe = 1.20 ± 0.12, δ65Cu = 0.57 ± 0.05, and δ66Zn = -0.79 ± 0.12 and δ68Zn = 

-1.65 ± 0.24, respectively. Those of CAGS-Basalt are δ56Fe = 0.15 ± 0.05, δ57Fe = 0.22 ± 0.05, δ65Cu = 0.12 ± 

0.07, δ66Zn = 0.17 ± 0.11, and δ68Zn = 0.34 ± 0.21 (2s). 

 

Keywords: reference materials, Fe isotopes, Cu isotopes, Zn isotopes, single-metal solution, basalt. 
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High-precision analyses of stable Fe, Cu and Zn isotopes have been possible since the advent of multi-collector-

inductively coupled plasma-mass spectrometry (MC-ICP-MS) (Maréchal et al. 1999, Zhu et al. 2000a, Belshaw 

et al. 2000, Anbar et al. 2001). With better understanding of their natural distribution and mass-fractionation 

mechanisms (Zhu et al. 2002, Dauphas et al. 2017, Moynier et al. 2017), these isotopic systems have been 

increasingly applied to constrain various parameters in many areas of science, including cosmochemistry (Zhu 

et al. 2000b, Luck et al. 2003), geochemistry (Zhu et al. 2002, Sossi et al. 2012, Zhang et al. 2015), mineral 

resources (Zhu et al. 2000a, Larson et al. 2003, Dong et al. 2017, Gao et al. 2018), oceanographic and 

environmental studies (Zhu et al. 2001, John and Adkins 2010, González et al. 2016), biology (Zhu et al. 2002, 

Moynier et al. 2009, Li et al. 2016), and medical science (Walczyk et al. 2002, Costas-Rodríguez et al. 2014, 

Larner et al. 2015). Recent reviews provide helpful references concerning these applications (Zhu et al. 2013, 

Dauphas et al. 2017, Moynier et al. 2017). 

 

Iron has four naturally occurring stable isotopes, 54Fe, 56Fe, 57Fe and 58Fe, with natural abundances of 5.845%, 

91.754%, 2.119% and 0.282%, respectively (Meija et al. 2016). Their isotopic compositions are expressed as 

δ56Fe and δ57Fe values relative to the Institute for Reference Materials and Measurements (IRMM) RM IRMM-

014 (Taylor et al. 1992), in per mil notation (‰), with δ56Fe values in natural samples ranging from 

approximately -4 to +2 (Zhu et al. 2013, Dauphas et al. 2017). Cu has two naturally occurring stable isotopes, 

63Cu and 65Cu, with abundances of 69.15% and 30.85%, respectively (Meija et al. 2016). Cu isotopic 

compositions are expressed relative to National Institute of Standards and Technology (NIST) reference material 

NIST SRM 976. Natural mass-dependent variations of terrestrial samples in δ65Cu cover values from -16.5 to 

+10 (Zhu et al. 2013, Moynier et al. 2017). Zn has five naturally occurring stable isotopes, 64Zn, 66Zn, 67Zn, 68Zn 

and 70Zn, with natural abundances of 49.17%, 27.73%, 4.04%, 18.45% and 0.61%, respectively (Meija et al. 

2016). Zn isotopic compositions are usually expressed as δ66Zn and δ68Zn relative to measurement standards 

JMC Lyon or IRMM-3702 with the latter being applied here. Natural δ66Zn values range from -1.49 to +1.12 

(Zhu et al. 2013, Moynier et al. 2017). 
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Applications of these isotopic systems rely heavily on precise and accurate determinations of isotopic 

compositions, and reference materials play fundamental roles in analyses. Two types of reference material are 

required to ensure measurement reliability: (a) single-element reference solutions for instrument calibration; and 

(b) geochemical reference materials to assess quality of chromatographic separation, measurement procedures, 

and mass spectrometry performance, as well as being helpful for inter-laboratory comparisons. The pure 

materials IRMM-014, NIST SRM 976, JMC Lyon and IRMM-3702 have been used as single-element solutions, 

and are internationally accepted as “delta-zero” reference materials for Fe, Cu and Zn isotopes, respectively. 

IRMM-014, NIST SRM 976 and JMC Lyon have been largely discontinued and are difficult to acquire. 

Secondary (“non-delta-zero”) reference materials for Fe, Cu and Zn isotopic analyses are required for 

instrument calibration. Here we describe three secondary reference solutions prepared specifically for Fe, Cu 

and Zn isotopic analyses: CAGS-Fe, CAGS-Cu and CAGS-Zn. 

 

For isotopic analyses of geochemical samples, reference materials with compositions similar to the samples are 

needed. Geochemical reference materials such as basalt (BCR-1, BCR-2, BHVO-1 and BIR-1(a)), peridotite 

(JP-1 and DTS-2(b)), andesite (AGV-2) and manganese nodules (NOD-P-1) have been employed as isotopic 

reference materials to check reliability of Fe, Cu and Zn isotopic data (e.g., Dauphas et al. 2004, Chapman et al. 

2006, Diderisken et al. 2006, Craddock and Dauphas, 2011, Moynier et al. 2011, Millet et al. 2012, Liu et al. 

2014, Sossi et al. 2015, Chen et al. 2016). However, as for single-element solutions, these materials were 

prepared as reference materials for elemental composition measurements only, and not specifically for isotopic 

analyses. Although they are useful external indicators of data accuracy and method reproducibility, their 

isotopic homogeneities have not been thoroughly assessed. Internationally benchmarked geological reference 

materials for Fe, Cu and Zn isotopes are needed. Basalts are the main components of oceanic crust. They form at 

high temperatures and cool quickly, contain few accessory phases, and are relatively easy to digest. Here we 

report the development of a basalt reference material, CAGS-Basalt (“CAGSR” in previous publications (Zhao 

et al. 2010, Dong et al. 2017)) for Fe, Cu and Zn isotopic ratio measurements. Isotopic homogeneity and 

stability of CAGS-Basalt were tested rigorously and are sufficient for the material to be used as a valid reference 

material. 
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Isotopic compositions of CAGS-Fe, CAGS-Cu, CAGS-Zn and CAGS-Basalt have been precisely determined by 

an inter-laboratory comparison with eight laboratories for CAGS-Fe, six for CAGS-Cu, seven for CAGS-Zn, six 

for CAGS-Basalt-Fe, five for CAGS-Basalt-Cu and four for CAGS-Basalt-Zn. 

 

Experimental 

Apparatus and reagents 

CAGS-Basalt was prepared in a Class 1000 clean room at the Laboratory of Isotopic Geology, Institute of 

Geology, Chinese Academy of Geological Sciences (CAGS), Beijing, China. CAGS-Fe, CAGS-Cu and CAGS 

Zn solutions were prepared in Class 100 laminar flow hoods in this clean room. A Savillex
®

 DST-1000 acid 

purification system was used to purify acids used, including HCl, HNO3 and HF. Savillex
®

 PFA containers, and 

FEP, HDPE and PP bottles, were soaked overnight in 5 mol l-1 HNO3 at ~ 100 °C, rinsed with water (resistivity 

15 MΩ cm), soaked in 1.5 mol l-1 purified HNO3 overnight, and rinsed with pure water (resistivity 18.2 MΩ cm) 

three times, before final drying. 

 

Preparation of candidate reference materials 

The single-metal solutions (CAGS-Fe, CAGS-Cu and CAGS-Zn) were prepared from high-purity Fe, Cu and Zn 

reference solutions provided by the National Centre of Analysis and Testing for Nonferrous Metals and 

Electronic Materials, Beijing, China, with certified concentrations of 1000 μg ml-1 in 1 mol l-1 HNO3. The Fe 

reference solution (1000 ml) was dispensed into 100 10 ml HDPE bottles and sealed for storage. Twenty 50 ml 

bottles of Cu and Zn reference materials (1000 µg ml-1 in 1 mol l-1 HNO3, with identical batch numbers) were 

combined in a single 1000 ml FEP bottle. Homogeneity was ensured by shaking. About 100 ml of each mixed 

solution was diluted to 100 µg ml-1 with 0.1 mol l-1 HCl, dispensed into 100 10 ml HDPE bottles, and sealed for 

storage. 

CAGS-Basalt reference materials were prepared from olivine basalt reference material GBW 07105 from 

Zhangjiakou, Hebei Province, China, provided by the Institute of Geophysical and Geochemical Exploration, 

CAGS. Iron, Cu and Zn contents of CAGS-Basalt are given in Table 1. Five bottles of GBW 07105 reference 
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material (200 mesh, 70 g in each bottle, identical batch numbers) were mixed in a FEP bottle. Homogeneity was 

ensured by shaking before the material was dispensed into 80 4 ml PP bottles and sealed for storage. These 

powders were used to test for isotopic homogeneity. The dispensed reference materials were stored at laboratory 

temperatures (22 ± 2 °C). 

 

Digestion of isotopic reference materials 

Basaltic reference materials BCR-2 and BIR-1(a) and CAGS-Basalt) were analysed for their Fe, Cu and Zn 

isotopic compositions. About 0.1 g of each was weighed accurately into 7 ml Savillex® beakers and heated on a 

hotplate at 130 °C with 5 ml of a 3:1 mixture of 17 mol l-1 HF and 12 mol l-1 HNO3, to ensure complete 

dissolution. After digestion, the solutions were evaporated to dryness, redissolved in 12 mol l-1 HNO3, 

evaporated to dryness three times, dissolved in 9 mol l-1 HCl, and evaporated to dryness three times. The 

residues were dissolved in 2 ml of 7 mol l-1 HCl + 0.001% H2O2 and centrifuged for 5 min at 4000 rpm to 

remove any residual solid before chromatographic separation of Fe, Cu and Zn. 

 

Chromatographic separation of Fe, Cu and Zn 

The chemical purification method used is as described by Maréchal et al. (1999) and Zhu et al. (2002). Bio-Rad 

AG MP-1 anion-exchange resin (200–400 mesh; chloride form; 10 ml Poly-Prep® column) was used for 

separation of Fe, Cu and Zn from matrix elements. The resin was cleaned three times with alternating 1mol l-1 

HCl and H2O (18.2 MΩ cm). The filled column was washed three times with alternating 10 ml 0.5 mol l-1 HNO3 

and H2O (18.2 MΩ cm). The resin volume was adjusted to 1.6 ml, in 7 mol l-1 HCl. The column was conditioned 

with 6 ml 7 mol l-1 HCl + 0.001% H2O2, before a sample in 1 ml 7 mol l-1 HCl + 0.001% H2O2 was loaded onto 

it. Matrix elements such as Na, Mg, Al, K, Ca, Ti, Cr, Ni and Mn were eluted in 10 ml 7 mol l-1 HCl, leaving Fe, 

Co, Cu and Zn on the resin. Cu was eluted in the following 20 ml 7 mol l-1 HCl + 0.001% H2O2. Fe was eluted 

with 20 ml 2 mol l-1 HCl + 0.001% H2O2, and Zn with 10 ml 0.5 mol l-1 HNO3. Elution sequences are 

summarized in Table 2. 
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The Fe fraction was evaporated to dryness, dissolved in concentrated HNO3, and then re-evaporated to dryness 

three times to remove all chloride, and re-dissolved in 0.1 mol l-1 HNO3 prior to isotopic analysis. The Cu 

fraction was evaporated to dryness, and re-dissolved in 0.1 mol l-1 HCl. The Zn fraction was evaporated to 

dryness, dissolved in concentrated HCl, re-evaporated to dryness three times to remove all nitrate, and re-

dissolved in 0.1 mol l-1 HCl prior to isotopic analysis. 

 

Total procedural blanks (from sample dissolution to mass spectrometry) were 0.001 μg for Cu, 0.09 μg for Fe, 

and 0.006 μg for Zn, with such amounts having no effect on δ values (approximate totals processed were Cu = 3 

μg, Fe = 3000 μg and Zn = 10 μg). Recoveries of Cu, Fe and Zn were 99.5% ± 0.8% (n = 3), 99.9% ± 0.3% (n = 

3), and 100.7% ± 4.0% (n = 3), respectively. 

 

MC-ICP-MS analysis 

Iron, Cu and Zn isotopic compositions of the purified reference materials were determined using a Nu Plasma 

HR MC-ICP-MS, with variable dispersion ion optics and a fixed array of twelve Faraday collectors, at the MNR 

(Ministry of Natural Resources of the People’s Republic of China) Key Laboratory of Isotopic Geology, 

Institute of Geology, CAGS. Isotopic mass fractionation was determined by standard-sample bracketing (Zhu et 

al. 2000, Belshaw et al. 2000). Iron isotopic ratios were determined in high-resolution mode (M/ΔM ~ 7000), 

and Cu and Zn isotopic ratios in low-resolution mode (M/ΔM ~ 400). 54Cr may cause isobaric interference with 

54Fe, and 54Cr was monitored at mass 53Cr, but Cr was removed during the chromatographic separation, and thus 

no correction was necessary. There are no interferences on 63Cu and 65Cu, 64Zn, 66Zn, 67Zn and 68Zn. Each 

analysis involved ten cycles with an integration time of 10 s per cycle. The RF power was 1300 W. An ASX-

100 automatic sampler and a Nu Instruments DSN-100 desolvating nebuliser were used. Samples and standards 

were diluted to produce solutions containing 200 ng ml-1 Cu and Zn in 0.1 mol l-1 HCl and 5 µg ml-1 Fe solution 

in 0.1 mol l-1 HNO3 respectively. Prior to each analysis, sequential 100 s rinses with 1 mol l-1 HCl or HNO3 and 

0.1 mol l-1 HCl or HNO3 of 100 s were performed. 
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The effect of acidity on instrumental mass discrimination was investigated earlier (Li et al. 2008), with results 

indicating that HNO3 has significant effects on Cu and Zn isotopes, whereas no effect was observed with HCl at 

concentrations of 0.05–3 mol l-1. HCl was therefore used for sample introduction. 

 

Iron, Cu and Zn isotopic values relative to IRMM-014, NIST SRM 976 and IRMM-3702, respectively, were 

calculated as follows: 

 

δ56Fe = 

56 54

sample

56 54

IRMM 014

Fe / Fe
1 1000

Fe / Fe 

 
   

 

            (1) 

 

δ57Fe = 
57 Fe /54 Fe

sample

57 Fe /54 Fe
IRMM-014

-1
æ

è

ç
ç

ö

ø

÷
÷
´1000             (2) 

 

δ65Cu = 
65 63

sample

65 63

SRM 976

Cu / Cu
1 1000

Cu / Cu

 
   

 

            (3) 

 

δ66Zn = 
66 64

sample

66 64

IRMM 3702

Zn / Zn
1 1000

Zn / Zn 

 
   

 

            (4) 

 

δ68Zn = 
66 64

sample

66 64

IRMM 3702

Zn / Zn
1 1000

Zn / Zn 

 
   

 

            (5) 
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Results and discussion 

Accuracy 

Basaltic reference materials have the following isotopic compositions, BCR-2: δ56Fe = 0.07 ± 0.02, δ65Cu = 0.16 

± 0.04, δ66Zn = -0.07 ± 0.02; and BIR-1(a): δ56Fe = 0.04 ± 0.03 δ65Cu = 0.03 ± 0.02, δ66Zn = -0.09 ± 0.03 (2s). 

These results are in good agreement with published data, within uncertainties (Figure 1 and online supporting 

information Table S1). 

 

Homogeneity of reference materials 

Homogeneity is of first-order importance for reference materials, and it was achieved here through application 

of national regulations for reference material preparation (ISO Guide 35, 2006). Thirteen bottles each of CAGS-

Fe, CAGS-Cu and CAGS-Zn, and thirteen bottles of CAGS-Basalt were randomly selected to test homogeneity 

of mixed materials. Two subsamples were taken from each bottle, with each being treated as an independent 

sample. Results of isotopic analyses of the replicates are expressed as Xi1 and Xi2 in Tables 3 and 4, and the 

average of duplicate pairs by Xi. Homogeneity testing was conducted under strictly the same conditions, with all 

tests being conducted in a single laboratory, using the same analytical method, by one analyst, and with all 

samples tested in the same session. 

 

Between-bottle inhomogeneity was tested by single-factor ANOVA statistics. The experimental F ratio is the 

ratio of the among-bottle variance (
2

amongs ) to the within-bottle variance (
2

withins ): 

F = 
2

among

2

within

s

s
                 (6) 

 

where the 
2

amongs  is the ratio of among-bottle sums of squares (SSamong) to the associated among-bottle degrees 

of freedom (vamong), and the 
2

withins  is the ratio of within-bottle sums of squares (SSwithin) to the associated 

within-bottle degrees of freedom (vwithin): 
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2

among among among/s SS v                (7) 

 

2

within within within/s SS v                (8) 

 

where vamong and vwithin depend on the number of units from which samples are taken (m) and the number of 

replicate measurements for each bottle (n), with vamong and vwithin computed as follows: 

 

vamong = m - 1                (9) 

 

vwithin = m × n - m                (10) 

 

Using ExcelTM, results shown in the ANOVA tables were computed (Tables 5 and 6). F-testing indicates that the 

result of homogeneity testing was insignificant (1 < F < Fcritical (vamong, vwithin); critical value of F for α = 5%; 

Kane et al. 2003), demonstrating that the samples have very good homogeneity. Differences in δ values (Tables 

5 and 6) were caused mainly by the repeatability of the method, rather than inhomogeneity of the reference 

materials. 

 

Stability of reference materials 

The long-term stability of CAGS-Fe, CAGS-Cu, CAGS-Zn and CAGS-Basalt were evaluated by determining 

δ56Fe, δ57Fe, δ65Cu, δ66Zn and δ68Zn values over a seven-year period (Figures 2 and 3, Tables S2 and S3). 

 

A linear model was used in evaluating stability, expressed as follows (ISO Guide 35 2006): 

0 1+ +Y b b X                  (11) 
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where b0 and b1 are regression coefficients, ε denotes the random error component, X is time in months, and Y is 

the Fe, Cu, or Zn isotope ratio. The slope of the fitted line can be computed from the following expressions: 

 

  

 
1

1
2

1

n

i i

i

n

i

i

X X Y Y

b

X X





 









               (12) 

 

0 1b Y b X                   (13) 

 

The standard deviation of a point along the line can be computed from s2 and s(b1) as follows: 

 

 
2

0 1
2 1

2

n

i i

i

Y b b X

s
n



 





               (14) 

 

 

 
1

2

1

n

i

i

s
s b

X X






               (15) 

 

Using Equation (12) and an appropriate Student’s t factor for (n - 2) degrees of freedom, and p = 0.95 (95% 

level of confidence), we obtain t0.95,n-2 = 2.0860 for Fe in CAGS-Fe; 2.2010 for Cu in CAGS-Cu; 2.1788 for Zn 

in CAGS-Zn; 2.1009 for Fe in CAGS-Basalt; 2.3646 for Cu in CAGS-Basalt; and 2.2010 for Zn in CAGS-

Basalt; with b1 being tested for significance (ISO Guide 35 2006). As |b1| < t0.95,(n–2)·s(b1), the slope was 

insignificant and no instability was observed (Tables S4 and S5). Results therefore indicate that over a seven-

year period δ56Fe, δ57Fe, δ65Cu, δ66Zn and δ68Zn values for CAGS-Fe, CAGS-Cu, CAGS-Zn and CAGS-Basalt 

display no statistically significant instability. 
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Fe, Cu and Zn isotopic compositions of the reference materials 

Reference isotopic compositions determined by inter-laboratory comparison with participating laboratories 

using different analytical approaches were consistent. For the intercomparison, CAGS-Fe, CAGS-Cu, CAGS-Zn 

and CAGS-Basalt samples were taken from different bottles for distribution. All materials were supplied as 

single samples. Three samples of each reference material were provided and laboratories were requested to 

analyse each sample three times. An overview of analytical protocols for each laboratory is provided in Table 7. 

Intercomparison results are given in Tables 8 and 9 and Figures 4 and 5, with data presented as means ± 2s. 

 

The consistency of inter-laboratory results confirms that the participating laboratories were able to perform 

accurate Fe, Cu and Zn isotope measurements. Iron, Cu and Zn isotopic compositions of the four reference 

materials were calculated from the unweighted means of inter-laboratory results, with results as follows. 

 

CAGS-Fe:  δ56Fe = 0.83 ± 0.06, δ57Fe = 1.20 ± 0.12 

CAGS-Cu: δ65Cu = 0.57 ± 0.05 

CAGS-Zn: δ66Zn = −0.79 ± 0.12, δ68Zn = −1.65 ± 0.24 

CAGS-Basalt: δ56Fe = 0.15 ± 0.05; δ57Fe = 0.22 ± 0.05; δ65Cu = 0.12 ± 0.07; 

    δ66Zn = 0.17 ± 0.11, δ68Zn = 0.34 ± 0.21. 

 

Conclusions 

Three single-element solution reference materials and a basaltic reference material for Fe, Cu and Zn isotopic 

analyses were prepared. Their isotopic compositions were determined in participating laboratories by MC-ICP-

MS. CAGS-Fe, CAGS-Cu and CAGS-Zn are satisfactory choices as reference materials for Fe, Cu and Zn 

isotopic analyses with their offset values from zero-delta, homogeneity, and stability being appropriate for 
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application in instrument calibration and analyst training. CAGS-Basalt can be used to validate chromatographic 

separation and total measurement procedures, and in inter-laboratory comparisons. All these reference materials 

are available upon request from the Institute of Geology, CAGS. 
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Figure captions 

 

Figure 1. Iron, Cu and Zn isotopic composition of BCR-2 and BIR-1(a) reported here and in referenced work. 

Black diamonds represent BCR-2; black circles represent BIR-1(a); and red error bars represent 2s. 

 

Figure 2. Long-term stability results of Fe, Cu and Zn isotopic compositions of CAGS-Fe, CAGS-Cu and 

CAGS-Zn. Red error bars represent 2s. 

 

Figure 3. Long-term stability of Fe, Cu and Zn isotopic compositions of CAGS-Basalt. Red error bars represent 

2s. 

 

Figure 4. Iron, Cu and Zn isotopic compositions of CAGS-Fe, CAGS-Cu and CAGS-Zn reference solutions, as 

determined by participating laboratories. Blank circles represent the δ-value of replicates, black squares 

represent averages, and red error bars represent 2s. 

 

Figure 5. Iron, Cu and Zn isotopic compositions of CAGS-Basalt as determined by participating laboratories. 

Blank circles represent the δ-value of replicates, black squares represent averages, and red error bars represent 

2s. 
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Table 1. 
   

Iron, Cu, and Zn contents of CAGS-Basalt 

    
Element Fe Cu Zn 

Content 9.38% m/m 49 μg g-1 150 μg g-1 

 

 

 

 

 

Table 2. 
  Elution sequence during ion-exchange chromatography 

   
Eluent Volume (ml) Purpose 

H2O and 0.5 mol l-1 HNO3 8 Resin cleaning 

7 mol l-1 HCl + 0.001% H2O2 15 Resin conditioning 

7 mol l-1 HCl + 0.001% H2O2 1 Sample Load 

7 mol l-1 HCl + 0.001% H2O2 5 Matrix elution 

7 mol l-1 HCl + 0.001% H2O2 20 Cu elution 

2 mol l-1 HCl + 0.001% H2O2 22 Fe elution 

0.5 mol l-1 HNO3 10 Zn elution 
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Table 3. 
               

Results of isotopic homogeneity testing of CAGS-Fe, CAGS-Cu and CAGS-Zn 
      

                

Bottle No. 
δ56Fe δ57Fe δ65Cu δ66Zn δ68Zn 

Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi 

8 0.72 0.82 0.77 1.06 1.23 1.15 0.64 0.63 0.64 -0.82 -0.71 -0.76 -1.68 -1.3 -1.49 

11 0.89 0.78 0.83 1.3 1.21 1.26 0.63 0.61 0.62 -0.74 -0.83 -0.79 -1.51 -1.64 -1.58 

23 0.81 0.75 0.78 1.2 1.17 1.18 0.59 0.67 0.63 -0.89 -0.87 -0.88 -1.8 -1.72 -1.76 

24 0.79 0.8 0.79 1.17 1.19 1.18 0.67 0.62 0.64 -0.85 -0.73 -0.79 -1.36 -1.38 -1.37 

32 0.88 0.9 0.89 1.26 1.29 1.28 0.58 0.61 0.59 -0.77 -0.77 -0.77 -1.2 -1.54 -1.37 

35 0.82 0.77 0.79 1.2 1.1 1.15 0.7 0.61 0.66 -0.9 -0.9 -0.9 -1.84 -1.9 -1.87 

41 0.69 0.82 0.76 1.06 1.2 1.13 0.56 0.56 0.56 -0.86 -0.68 -0.77 -1.68 -1.19 -1.44 

45 0.68 0.85 0.77 1.04 1.29 1.16 0.55 0.57 0.56 -0.84 -0.8 -0.82 -1.65 -1.61 -1.63 

52 0.86 0.88 0.87 1.28 1.32 1.3 0.55 0.6 0.57 -0.95 -0.9 -0.92 -1.98 -1.84 -1.91 

62 0.75 0.8 0.78 1.17 1.2 1.19 0.55 0.58 0.57 -0.82 -0.7 -0.76 -1.61 -1.22 -1.41 

63 0.86 0.84 0.85 1.31 1.2 1.25 0.57 0.6 0.59 -0.89 -0.83 -0.86 -1.85 -1.66 -1.76 

77 0.72 0.8 0.76 1.11 1.24 1.17 0.59 0.6 0.59 -0.71 -0.74 -0.72 -1.29 -1.39 -1.6 

79 0.93 0.87 0.9 1.32 1.34 1.33 0.55 0.62 0.58 -0.81 -0.78 -0.79 -1.61 -1.56 -1.6 

Long-term analysis of GAGS-Fe over seven years gave δ56Fe of 0.82 ± 0.11 and δ57Fe of 1.21 ± 0.15 (2s; n = 734) relative to IRMM-014. 

  
Long-term analysis of GAGS-Cu over seven years gave δ65Cu of 0.55 ± 0.08 (2s; n = 289) relative to NIST SRM 976. 

   
Long-term analysis of GAGS-Zn over seven years gave δ66Zn of -0.79 ± 0.11 and δ68Zn of -1.59 ± 0.23 (2s; n = 271) relative to IRMM-3702. 

  

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 4. 
               Results of homogeneity testing of Fe, Cu and Zn isotopic compositions of CAGS-Basalt 

      
                

Bottle No. 
δ56Fe δ57Fe δ65Cu δ66Zn δ68Zn 

Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi Xi1 Xi2 Xi 

8 0.07 0.07 0.07 0.07 0.07 0.07 0.16 0.08 0.12 0.26 0.24 0.25 0.51 0.47 0.49 

11 0.14 0.11 0.13 0.13 0.12 0.13 0.23 0.13 0.18 0.30 0.31 0.31 0.58 0.65 0.62 

23 0.12 0.14 0.13 0.17 0.14 0.16 0.24 0.25 0.25 0.23 0.23 0.23 0.49 0.44 0.46 

24 0.10 0.09 0.10 0.11 0.21 0.16 0.19 0.32 0.26 0.22 0.25 0.23 0.41 0.50 0.45 

32 0.08 0.15 0.12 0.19 0.01 0.10 0.21 0.07 0.14 0.25 0.19 0.22 0.51 0.36 0.43 

35 0.07 0.02 0.05 0.18 0.11 0.15 0.30 0.15 0.23 0.22 0.25 0.23 0.42 0.53 0.48 

41 0.14 0.15 0.15 0.08 0.08 0.08 0.15 0.13 0.14 0.21 0.29 0.25 0.37 0.57 0.47 

45 0.14 0.02 0.08 0.11 0.16 0.14 0.18 0.20 0.19 0.30 0.27 0.29 0.55 0.46 0.50 

52 0.10 0.16 0.13 0.15 0.11 0.13 0.25 0.16 0.21 0.28 0.29 0.28 0.55 0.60 0.58 

62 0.14 0.13 0.14 0.05 0.06 0.06 0.13 0.10 0.12 0.28 0.29 0.29 0.48 0.57 0.53 

63 0.08 0.08 0.08 0.18 0.17 0.18 0.31 0.28 0.30 0.28 0.27 0.28 0.56 0.51 0.54 

77 0.09 0.11 0.10 0.11 0.15 0.13 0.18 0.24 0.21 0.22 0.32 0.27 0.39 0.63 0.51 

79 0.09 0.07 0.08 0.06 0.13 0.10 0.12 0.14 0.13 0.25 0.28 0.26 0.50 0.55 0.53 

Long-term analysis of GAGS-Fe over seven years gave δ56Fe of 0.82 ± 0.11and δ57Fe of 1.21 ± 0.15 (2s; n = 734) relative to IRMM-014. 

  Long-term analysis of GAGS-Cu over seven years gave δ65Cu of 0.55 ± 0.08 (2s; n = 289) relative to NIST SRM 976. 

    Long-term analysis of GAGS-Zn over seven years gave δ66Zn of -0.79 ± 0.11 and δ68Zn of -1.59 ± 0.23 (2s; n = 271) relative to IRMM-3702. 

   

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 5. 
        ANOVA table for homogeneity testing of Fe, Cu and Zn isotopic compositions of CAGS-Fe, CAGS-Cu and CAGS-

Zn 

         
CAGS δ65Cu δ56Fe δ57Fe δ66Zn δ68Zn 

   
n 2 

   
m 13 

   
SSamong 0.028 0.0645 0.1011 0.0918 0.7993 

   
SSwithin 0.0135 0.046 0.0799 0.0458 0.5025 

   
vamong 12 

   
vwithin 13 

   
F 2.24 1.52 1.37 2.17 1.72 

   
F0.05(12, 13) 2.6 
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Table 6. 
       ANOVA table for homogeneity testing of Fe, Cu and Zn isotopic compositions of CAGS-Basalt 

        CAGS-

Basalt 
δ65Cu δ56Fe δ57Fe δ66Zn δ68Zn 

  
n 2 

  
m 13 

  
SSamong 0.022 0.0326 0.0786 0.0175 0.0619 

  
SSwithin 0.0139 0.0296 0.0451 0.0125 0.0839 

  
vamong 12 

  
vwithin 13 

  
F 1.71 1.19 1.89 1.51 0.8 

  
F0.05(12, 13) 2.6 
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Table 7. 

Overview of the methods employed by participating laboratories for Fe, Cu and Zn isotopic analyses. The chromatographic procedures for Fe, Cu and Zn 

 

 

Ins trument parametersMLR Key Laborato ry o f Iso top ic Geo logy, Ins t itute o f Geo logy, CAGSCAS Key Laborato ry o f Crus t-Mantle and  Environments , Univers ity o f Science and  Techno logy o f ChinaIso tope Geochemis try Lab , China Univers ity o f Geosciences , BeijingDepartment o f Earth Sciences , Univers ity o f Oxfo rdDepartment o f Earth and  Environmental Sciences , Open Univers ityState Key Laborato ry o f Marine Environmental Science, Xiamen Univers ityFirs t  Ins t itute o f Oceanography, State Oceanic Adminis trat ion o f China, National Marine Environmental Monito ring  CenterState Key Laborato ry fo r Mineral Depos its  Research, Department o f Earth Sciences , Nanjing  Univers ityMLR Key Laborato ry o f Metallogeny and  Mineral Assessment, Ins t itute o f Mineral Resources , CAGS

Chromatography afterMaréchal et  al.  (1999) and  Zhu et  al.  (2002)Chen et  al. (2016) Liu et  al.  (2014)Maréchal et  al.  (1999) and  Zhu et  al.  (2002)Maréchal et  al.  (1999) and  Zhu et  al.  (2002)Maréchal et  al.  (1999) and  Zhu et  al.  (2002)Maréchal et  al.  (1999) and  Zhu et  al.  (2002)Zhu et  al.  (2015)

Ins trument Nu Plasma (Cu and  Zn)

(MC-ICP-MS) Nu Plasma HR (Fe)

Nu Ins truments Nu Ins truments Nu Ins truments Nu Ins truments  

DSN-100 DSN-100  (Fe) DSN-100 DSN-100

Cetac MCN 6000  (Cu and  Zn)

Ins trumental mass  b ias  co rrectionSSB SSB SSB SSB SSB SSB SSB SSB SSB

54
Fe (

54
Cr): L3 , 

56
Fe: H5 and  

57
Fe: H6

53
Cr: L3 , 

54
Fe (

54
Cr): L1, 

57
Fe: H1, 

58
Fe: H2 , and  

60
Ni: H4

54
Fe (

54
Cr): L3 , 

56
Fe: H5 and  

57
Fe: H6

54
Fe (

54
Cr): L2 , 

56
Fe: L1 and  

57
Fe: C

54
Fe (

54
Cr): L7, 

56
Fe: H1 and  

57
Fe: H2

53
Cr: L5, 

54
Fe (

54
Cr): L3 , 

56
Fe: H4  and  

57
Fe: H6

63
Cu: H1 and  

65
Cu: H4

63
Cu: L4  and  

65
Cu: L1

63
Cu: H1 and  

65
Cu: H4

63
Cu: C and  

65
Cu: 

H1

63
Cu: L7 and  

65
Cu: H1 

63
Cu: L2  and  

65
Cu: H4

64
Zn: L4 , 

66
Zn: C, 

67
Zn: H3  and  

68
Zn: H5

64
Zn: L2 , 

66
Zn: C, 

67
Zn: H1, 

68
Zn: H3  and  

70
Zn: H4

64
Zn: L4 , 

66
Zn: C, 

67
Zn: H3  and  

68
Zn: H5

64
Zn: L1, 

66
Zn: H1, 

67
Zn: H2  and  

68
Zn: 

H3

64
Zn: L7, 

66
Zn: H1, 

67
Zn: H2  and  

68
Zn: H3

64
Zn: L4 , 

66
Zn: C, 

67
Zn: H3  and  

68
Zn: H5

Fe: MR (> 6000) Fe: HR (~ 7000) Fe: MR (> 7000) Fe: HR (~ 7000) Fe: HR (~ 7000)

Cu and  Zn: LR Cu and  Zn: LR Cu and  Zn: LR Cu and  Zn: LR Cu and  Zn: LR

RF Power (W) 1300 1125–1200 1250 1300 1200 1300 1350 1200 1200

Cones Ni cone Ni cone Ni cone Ni cone X cone Ni cone Ni cone Ni cone Ni cone

Sample up take ~ 100  μl min
-1

~ 50  μl min
-1

~ 50  μl min
-1

100  μl min
-1

~ 100  μl min
-1

~ 100  μl min
-1

~ 100  μl min
-1

~ 50  μl min
-1

~ 50  μl min
-1

56
Fe sens it ivity ~ 4  V/ppm ~ 9  V/ppm ~ 4  V/ppm ~ 130  V/ppm ~ 4  V/ppm ~ 4  V/ppm ~ 8  V/ppm ~ 6V/ppm

63
Cu sens it ivity ~ 30  V/ppm ~ 20  V/ppm ~ 30  V/ppm ~ 250  V/ppm ~ 30  V/ppm ~ 30  V/ppm

64
Zn sens it ivity ~ 30  V/ppm ~ 25 V/ppm ~ 15 V/ppm ~ 30  V/ppm ~ 250  V/ppm ~ 30  V/ppm ~ 30  V/ppm

Blocks 1 1 3 1 1 1 1 3 9

Cycles /Block 10 60 25 20 50 30 10 10 10

Integ rat ion Time 10  s 2 .097 s ~8  s 10  s 4 .194  s 30  s 20  s 4 .194  s 4 .194  s

Thermo  Finnigan Nep tune

Cetac Aridus

Nu Plasma HRThermo  Finnigan Nep tune Plus

Sample introduction Cetac Aridus Cetac Aridus Wet Plasma

Thermo  Finnigan Nep tune Thermo  Finnigan Nep tuneNu Plasma HR Nu Plasma HRThermo  Finnigan Nep tune p lus

Cup  configuration
64

Zn: L2 , 
66

Zn: C, 
67

Zn: H1 and  
68

Zn: H2

53
Cr: L2 , 

54
Fe 

(
54

Cr): L1, 
56

Fe: C, 
57

Fe: H1, 
58

Fe: H2  

and   
60

Ni: H4

52
Cr: L4 , 

53
Cr: L2 , 

54
Fe (

54
Cr): L1, 

56
Fe: C, 

57
Fe: H1 and  

58
Fe: H2

Cetac Aridus

Fe: MR (> 7000)Reso lution mode (M /ΔM )Fe: HR (~ 7000)Cu and  Zn: LR Zn: LR Fe: MR (7000)
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Table 8. 
          Iron, Cu and Zn isotopic compositions of CAGS-Fe, CAGS-Cu and CAGS-Zn reference solutions, as determined by participating laboratories 

           
Institution/laboratory Replicates δ56Fe ± 2s δ57Fe ± 2s δ65Cu ± 2s δ66Zn ± 2s δ68Zn ± 2s 

    

MNR Key Laboratory of 

Isotopic Geology, Institute 

of Geology, CAGS 

1 0.8 1.2 0.59 -0.87 -1.77 

    
2 0.87 1.17 0.6 -0.81 -1.7 

    
3 0.84 1.22 0.58 -0.78 -1.65 

    
Mean ± 2s 0.84 ± 0.07 1.20 ± 0.05 0.59 ± 0.02 -0.82 ± 0.09 -1.71 ± 0.12 

    

CAS Key Laboratory of 

Crust-Mantle and 

Environments, University 

of Science and 

Technology of China 

1 0.77 1.11 0.52 -0.84 -1.74 

    
2 0.79 1.18 0.54 -0.83 -1.73 

    
3 0.8 1.19 0.53 -0.83 -1.71 

    
Mean ± 2s 0.79 ± 0.03 1.16 ± 0.09 0.53 ± 0.02 -0.83 ± 0.01 -1.73 ± 0.03 

    

Isotope Geochemistry 

Lab, China University of 

Geosciences, Beijing 

1       -0.88 -1.69 

    
2       -0.9 -1.79 

    
3       -0.87 -1.68 

    
Mean ± 2s       -0.88 ± 0.03 -1.72 ± 0.12 

    

Department of Earth 

Sciences, University of 

Oxford 

1 0.79 1.15 0.55 -0.7 -1.52 

    
2 0.82 1.3 0.6 -0.71 -1.57 

    
3 0.84 1.18 0.55 -0.79 -1.54 

    
Mean ± 2s 0.82 ± 0.05 1.21 ± 0.16 0.57 ± 0.06 -0.74 ± 0.10 -1.54 ± 0.05 

    

Department of Earth and 

Environmental Sciences, 

Open University 

1 0.88 1.27 0.59 -0.76 -1.2 

    
2 0.85 1.26 0.6 -0.76 -1.13 

    
3 0.87 1.3 0.58 -0.82 -1.21 

    
Mean ± 2s 0.87 ± 0.03 1.28 ± 0.04 0.59 ± 0.02 -0.78 ± 0.07 -1.55 ± 0.09 

    

State Key Laboratory of 

Marine Environmental 

Science, Xiamen 

University 

1 0.86 1.23 0.54 -0.82 -1.75 

    
2 0.85 1.22 0.62 -0.77 -1.81 

    
3 0.91 1.35 0.55 -0.83 -1.88 

    
Mean ± 2s 0.87 ± 0.06 1.27 ± 0.14 0.57 ± 0.09 -0.80 ± 0.06 -1.81 ± 0.13 
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First Institute of 

Oceanography, State 

Oceanic Administration of 

China, National Marine 

Environmental Monitoring 

Center 

1 0.84 1.1 0.55 -0.72 -1.45 

    
2 0.79 1.08 0.55 -0.72 -1.49 

    
3 0.8 1.14 0.55 -0.77 -1.54 

    
Mean ± 2s 0.81 ± 0.05 1.10 ± 0.06 0.55 ± 0.00 -0.74 ± 0.06 -1.49 ± 0.09 

    

State Key Laboratory for 

Mineral Deposits 

Research, Department of 

Earth Sciences, Nanjing 

University 

1 0.81 1.21       

    
2 0.83 1.19       

    
3 0.84 1.18       

    
Mean ± 2s 0.83 ± 0.03 1.19 ± 0.03       

    

MNR Key Laboratory of 

Metallogeny and Mineral 

Assessment, Institute of 

Mineral Resources, CAGS 

1 0.79 1.18       

    
2 0.8 1.18       

    
3 0.82 1.2       

    
Mean ± 2s 0.80 ± 0.03 1.19 ± 0.02       

    
GRAND MEAN ± 2s 0.83 ± 0.06 1.20 ± 0.12 0.57 ± 0.05 -0.79 ± 0.12 -1.65 ± 0.24 
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Table 9. 
      Iron, Cu and Zn isotopic compositions of CAGS-Basalt determined by participating 

laboratories 

       
Institution/laboratory Replicates δ56Fe ± 2s δ57Fe ± 2s δ65Cu ± 2s δ66Zn ± 2s δ68Zn ± 2s 

MLR Key 

Laboratory of 

Isotopic Geology, 

Institute of Geology, 

CAGS 

1 0.11 0.16 0.07 0.18 0.37 

2 0.13 0.22 0.13 0.24 0.47 

3 0.17 0.26 0.09 0.27 0.54 

Mean ± 2s 0.14 ± 0.05 0.21 ± 0.11 0.10 ± 0.06 0.23 ± 0.09 0.46 ± 0.17 

CAS Key 

Laboratory of Crust-

Mantle and 

Environments, 

University of 

Science and 

Technology of China 

1 0.14 0.21 0.08 0.08 0.21 

2 0.17 0.27 0.1 0.12 0.23 

3 0.18 0.27 0.1 0.12 0.21 

Mean ± 2s 0.16 ± 0.04 0.25 ± 0.06 0.09 ± 0.02 0.11 ± 0.04 0.21 ± 0.02 

Department of Earth 

Sciences, University 

of Oxford 

1 0.13 0.17 0.14 0.12 0.22 

2 0.15 0.16 0.06 0.19 0.46 

3 0.09 0.26 0.1 0.09 0.18 

Mean ± 2s 0.12 ± 0.06 0.20 ± 0.10 0.10 ± 0.09 0.13 ± 0.10 0.27 ± 0.30 

Department of Earth 

and Environmental 

Sciences, The Open 

University 

1 0.15 0.28 0.15 0.25 0.48 

2 0.22 0.3 0.18 0.19 0.38 

3 0.15 0.2 0.21 0.22 0.39 

Mean ± 2s 0.18 ± 0.08 0.26 ± 0.10 0.18 ± 0.06 0.22 ± 0.06 0.42 ± 0.11 

First Institute of 

Oceanography, State 

Oceanic 

Administration of 

China, National 

Marine 

Environmental 

Monitoring Centre 

1 0.14 0.24 0.12     

2 0.15 0.19 0.13     

3 0.08 0.15 0.09     

Mean ± 2s 0.12 ± 0.07 0.19 ± 0.09 0.11 ± 0.04     

State Key 

Laboratory for 

Mineral Deposits 

Research, 

Department of Earth 

Sciences, Nanjing 

University 

1 0.14 0.28       

2 0.15 0.19       

3 0.21 0.23       

Mean ± 2s 0.17 ± 0.04 0.23 ± 0.05       

GRAND MEAN ± 2s 0.15 ± 0.05 0.22 ± 0.05 0.12 ± 0.07 0.17 ± 0.11 0.34 ± 0.21 
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