4,328 research outputs found
Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression
The primers used for the amplification of the indicated genes.(DOCX 17 kb
IFN-γ and TNF-α Synergistically Induce Mesenchymal Stem Cell Impairment and Tumorigenesis via NFκB Signaling
An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here we show that the proinflammatory cytokines interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)–mediated activation of Mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice. More interestingly, a long-term elevated levels of IFN-γ and TNF-α result in significantly increased susceptibility to malignant transformation in MSCs through NFκB–mediated upregulation of the oncogenes c-Fos and c-Myc. Depletion of either IFN-γ or TNF-α in OVX mice abolishes MSC impairment and the tendency toward malignant transformation with no NFκB–mediated oncogene activation. Systemic administration of aspirin, which significantly reduces the levels of IFN-γ and TNF-α, results in blockage of MSC deficiency and tumorigenesis by inhibition of NF-κB/SMAD7 and NFκB/c-FOS and c-MYC pathways in OVX mice. In summary, this study reveals that inflammation factors, such as IFN-γ and TNF-α, synergistically induce MSC deficiency via NFκB/SMAD7 signaling and tumorigenesis via NFκB–mediated oncogene activation
IFN-γ and TNF-α Synergistically Induce Mesenchymal Stem Cell Impairment and Tumorigenesis via NFκB Signaling
An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here we show that the proinflammatory cytokines interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)–mediated activation of Mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice. More interestingly, a long-term elevated levels of IFN-γ and TNF-α result in significantly increased susceptibility to malignant transformation in MSCs through NFκB–mediated upregulation of the oncogenes c-Fos and c-Myc. Depletion of either IFN-γ or TNF-α in OVX mice abolishes MSC impairment and the tendency toward malignant transformation with no NFκB–mediated oncogene activation. Systemic administration of aspirin, which significantly reduces the levels of IFN-γ and TNF-α, results in blockage of MSC deficiency and tumorigenesis by inhibition of NF-κB/SMAD7 and NFκB/c-FOS and c-MYC pathways in OVX mice. In summary, this study reveals that inflammation factors, such as IFN-γ and TNF-α, synergistically induce MSC deficiency via NFκB/SMAD7 signaling and tumorigenesis via NFκB–mediated oncogene activation
Sulodexide for Secondary Prevention of Recurrent Venous Thromboembolism: A Systematic Review and Meta-Analysis
Background: Patients with venous thromboembolism have high risk of recurrence after discontinuation of anticoagulant treatment. Extended anticoagulation, such as traditional anticoagulants, can reduce the risk of recurrence but is associated with increased risk of hemorrhage. Sulodexide is a natural glycosaminoglycan mixture which can prevent recurrent venous thromboembolism. However, its clinical efficiency and safety still remain controversial.Methods: A systematic search in Medline, EMBASE, Cochrane Library, Web of Science and bibliographies of retrieved articles was performed. Prospective controlled studies reporting the efficacy and safety of sulodexide on the secondary prevention of recurrent venous thromboembolism were included. Two reviewers independently extracted the following data: first author, year of publication, study design, characteristics of patients, data of interventions, doses of sulodexide, overall duration of drug administration, time of follow-up, efficacy and safety outcomes, adverse effects, and the quality of the included studies. The primary efficacy outcomes were recurrent deep vein thrombosis (DVT) or pulmonary embolism. The secondary efficacy outcomes included distal or superficial vein thrombosis and nonfatal or fatal myocardial infarction, stroke, and acute ischemia of the lower limbs. Safety outcome was possible hemorrhagic episodes.Results: Four studies involving 1,461 patients were enrolled in this study. Meta-analysis showed that sulodexide significantly reduced the recurrent venous thromboembolism [RR 0.51, 95 % CI [0.35, 0.74], P = 0.0004] and superficial vein thrombosis in the sulodexide group [RR 0.41, 95% CI [0.22, 0.76], P = 0.005]. The safety of sulodexide was also reliable. The rate of bleeding was 0.28% in the sulodexide group and 1.60% in the control group, and design of study did not influence these results.Conclusions: Sulodexide could significantly reduce the recurrence of VTE after discontinuation of anticoagulation treatment as compared with placebo
Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering
In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized via a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts show a high power factor of 5.57 μW cm−1 K−2 and low thermal conductivity of 0.32 W m−1 K−1 at 823 K, contributing to a high peak ZT of ∼1.41. Through a combination of detailed structural and chemical characterizations, we found that with increasing the Cu doping level, the morphology of the synthesized Sn1−xCuxSe (x is from 0 to 0.118) transfers from rectangular microplate to microbelt. The high electrical transport performance comes from the obtained Cu+ doped state, and the intensive crystal imperfections such as dislocations, lattice distortions, and strains, play key roles in keeping low thermal conductivity. This study fills in the gaps of the existing knowledge concerning the doping mechanisms of Cu in SnSe systems, and provides a new strategy to achieve high thermoelectric performance in SnSe-based thermoelectric materials
The Wavelength-Locking of High-Power 808 nm Semiconductor Laser
A distributed feedback (DFB) laser of 808 nm is produced in this paper whose optical power is 2 W, cavity length is 3 mm, and injecting width is 200 μm. A second-order grating formed into an InGaP/GaAs/InGaP multilayer structure provides the optical distributed feedback. The holographic lithography method is adopted to make Bragg gratings in p-waveguide layer (Λ = 240 nm) of the GaAs epitaxial wafers. The best experimental conditions are determined by analyzing the surface morphology and three-dimensional holographic grating. In addition, the output power data and wavelength of the distributed feedback laser emitting at different temperatures are presented. And the wavelength varies with temperature at a rate of 0.062 nm/K. Finally, the conclusion is drawn that this kind of DFB laser has a better temperature stabilized wavelength and narrower line width
Study of color connections in annihilation
We replace in the event generator JETSET the color singlet chain connection
with the color separate state one as the interface between the hard and soft
sectors of hadronic processes. The modified generator is applied to produce the
hadronic events in annihilation. It describes the experimental data
at the same level as the original JETSET with default parameters. This should
be understood as a demonstration that color singlet chain is not the unique
color connection. We also search for the difference in special sets of
three-jet events arising from different color connections, which could subject
to further experimental test.Comment: 23 pages, 8 figures, 4 tables, Revtex
- …