8,058 research outputs found

    Synthesis of Epoxidatied Castor Oil and Its Effect on the Properties of Waterborne Polyurethane

    Get PDF
    AbstractIn this study, a new method for synthesis poxidatied castor oil (ECO) is engaged. A series of waterborne polyurethane dispersions (WPUs) were synthesized using polytetramethylene ether glycol (PTMEG), toluene diisocyanate (TDI-80), and ECO. These WPUs can be crosslinked spontaneously upon drying, without extra additives or processing steps. Moreover, the particle size, and morphology of WPUs were examined with light scattering ultrafine particle analyzer, and transmission electron microscopy. The anti-water, thermal and mechanical properties were also studied. Results reveal that the particle size of WPUs mainly depends on the concentrations of ECO. The particle size decreases when the ECO is used. Furthermore, increased amount of ECO results in an improvement of the anti-water, thermal and mechanical properties of WPU films

    Solving Multi-Objective Voltage Stability Constrained Power Transfer Capability Problem using Evolutionary Computation

    Get PDF
    Competitive market forces and the ever-growing load demand are two of the key issues that cause power systems to operate closer to their system stability boundaries. Open access has since introduced competition and therefore promotes inter-regional electrical power trades. However, the economic flows of electrical energy between interconnected regions are usually constrained by system physical limits, e.g. transmission lines capacity and generation active/reactive power capability etc. As such, there is a limitation to the capacity of electrical power that regions can export or import. This maximum allowable electrical power transfer is normally referred to as Total Transfer Capability (TTC). It is critical to understand that TTC does not necessarily represent a safe and reliable amount of inter-regional power transfer as one or more operational limits are usually binding when quantifying TTC. Hence, it is of interest that power system stability issues are being considered during power transfer capability assessment in order to provide a more appropriate and secure power transfer level.The aim of this paper is to formulate an Optimal Power Flow (OPF) algorithm, which is capable of evaluating inter-area power transfer capability considering mathematically-complex voltage collapse margins. Through a multi-objective optimization setup, the proposed OPF-based approach can reveal the nonlinear relationships, i.e. the pareto-optimal front, between transfer capability and voltage stability margins. The feasibility of this approach has been intensively tested on a 3-machine 9-bus and the IEEE 118-bus systems

    Gene Expression Profiling of Skeletal Muscle of Nursing Piglets

    Get PDF
    To gain insight into the regulation mechanism associated with the rapid gain in skeletal muscle during neonatal period, gene expression profiles of skeletal muscle of nursing pigs was investigated using Affymetrix Porcine GeneChip. A total of 1094 transcripts were detected as differential expression over time course tested (p<0.01, q<0.05). With combinative use of partitioning around medoid and hierarchical clustering, three clusters of transcripts with distinct temporal expression were defined. Gene functional categories and pathways, particularly involved in cell signaling, cell cycle, cell adhesion, ECM-receptor interaction, glycolysis, protein synthesis and degradation, and intracellular transport, were identified. Moreover, we showed 49 of the differentially expressed genes within published QTL regions or with marked deletion effects. Our study demonstrates previously uncharacterized changes in transcription accompanying early postnatal growth of skeletal muscle of pigs. It has highlighted potential cascades and important candidates for further investigation on controlling of postnatal muscle growth

    Heterogenization of Photochemical Molecular Devices: Embedding a Metal–Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer

    Get PDF
    Application of a molecular catalyst in artificial photosynthesis is confronted with challenges such as rapid deactivation due to photodegradation or detrimental aggregation in harsh conditions. In this work, a metal-organic cage [Pd-6(RUL3)(8)](28+) (MOC-16), characteristic of a photochemical molecular device (PMD) concurrently integrating eight Ru2+ light-harvesting centers and six Pd2+ catalytic centers for efficient homogeneous H-2 production, is successfully heterogenized through incorporation into a metal-organic framework (MOF) of ZIF-8 and then transformed into a carbonate matrix of Zn-x(MeIm)(x)(CO3)(x) (CZIF), leading to hybridized MOC-16@CZIF. This MOC@MOF integrated photocatalyst inherits a highly efficient and directional electron transfer in the picosecond domain of MOC-16 and possesses one order increased microsecond magnitude of the triplet excited-state electron in comparison to that of the primitive MOC-16. The carbonate CZIF matrix endows MOC-16@CZIF with water wettability, serving as a proton relay to facilitate proton delivery by virtue of H2O as proton carriers. Electron transfer during the photocatalytic process is also enhanced by infiltration of a sacrificial agent of BIH into the CZIF matrix to promote conductivity, owing to its strong reducing ability to induce free charge carriers. These synergistic effects contribute to the extra high activity for H-2 generation, making the turnover frequency of this heterogeneous MOC-16@CZIF photocatalyst maintain a level of similar to 0.4 H-2.s(-1), increased by 50-fold over that of a homogeneous PMD. Meanwhile, it is robust enough to tolerate harsh reaction conditions, presenting an unprecedented heterogenization example of homogeneous PMD with a MOF-derived matrix to mimic catalytic features of a natural photosystem, which may shed light on the design of multifunctional PMD@MOF materials to expand the number of molecular catalysts for practical application in artificial photosynthesis

    3,3′-Dibromo-1,1′-[(propane-1,3-diyl­dioxy)­bis(nitrilo­methyl­idyne)]dibenzene

    Get PDF
    The mol­ecule of the title compound, C17H16Br2N2O2, lies on a twofold axis that passes through the middle atom of the three-atom trimethyl­ene unit. The two aromatic rings are aligned at an angle of 76.02 (4)°

    Two successive field-induced spin-flop transitions in single-crystalline CaCo2_{2}As2_{2}

    Full text link
    CaCo2_{2}As2_{2}, a ThCr2_{2}Si2_{2}-structure compound, undergoes an antiferromagnetic transition at \emph{TN_{N}}=76K with the magnetic moments being aligned parallel to the \emph{c} axis. Electronic transport measurement reveals that the coupling between conducting carriers and magnetic order in CaCo2_{2}As2_{2} is much weaker comparing to the parent compounds of iron pnictide. Applying magnetic field along \emph{c} axis induces two successive spin-flop transitions in its magnetic state. The magnetization saturation behaviors with \emph{\textbf{H}∥\parallelc} and \emph{\textbf{H}∥\parallelab} at 10K indicate that the antiferromagnetic coupling along \emph{c} direction is very weak. The interlayer antiferromagntic coupling constant \emph{Jc_{c}} is estimated to be about 2 meV.Comment: Accepted for publication in Phys. Rev. B. 5 pages, 6 figure

    -Convergence Problems for Asymptotically Nonexpansive Mappings in CAT(0) Spaces

    Get PDF
    New △-convergence theorems of iterative sequences for asymptotically nonexpansive mappings in CAT(0) spaces are obtained. Consider an asymptotically nonexpansive self-mapping of a closed convex subset of a CAT(0) space . Consider the iteration process , where is arbitrary and or for , where . It is shown that under certain appropriate conditions on   △-converges to a fixed point of
    • …
    corecore