15,356 research outputs found

    Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous

    Full text link
    In cognitive radio (CR) networks, "TTR", a.k.a. time-to-rendezvous, is one of the most important metrics for evaluating the performance of a channel hopping (CH) rendezvous protocol, and it characterizes the rendezvous delay when two CRs perform channel hopping. There exists a trade-off of optimizing the average or maximum TTR in the CH rendezvous protocol design. On one hand, the random CH protocol leads to the best "average" TTR without ensuring a finite "maximum" TTR (two CRs may never rendezvous in the worst case), or a high rendezvous diversity (multiple rendezvous channels). On the other hand, many sequence-based CH protocols ensure a finite maximum TTR (upper bound of TTR) and a high rendezvous diversity, while they inevitably yield a larger average TTR. In this paper, we strike a balance in the average-maximum TTR trade-off for CR rendezvous by leveraging the advantages of both random and sequence-based CH protocols. Inspired by the neighbor discovery problem, we establish a design framework of creating a wake-up schedule whereby every CR follows the sequence-based (or random) CH protocol in the awake (or asleep) mode. Analytical and simulation results show that the hybrid CH protocols under this framework are able to achieve a greatly improved average TTR as well as a low upper-bound of TTR, without sacrificing the rendezvous diversity.Comment: Accepted by IEEE International Conference on Communications (ICC 2015, http://icc2015.ieee-icc.org/

    Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)acetate

    Get PDF
    The title compound, C10H11N3O2, was synthesized by the reaction of 1H-benzotriazole with ethyl 2-chloro­acetate in ethanol. The non-H atoms, excluding the benzotriazol-1-yl group, are almost coplanar (r.m.s. deviation of the non-H atoms = 0.0409 Å). The dihedral angle formed between this plane and the benzotriazole ring is 79.12 (5)° In the crystal, weak inter­molecular C—H⋯N and C—H⋯O inter­actions help to consolidate the three-dimensional network

    Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin-orbit coupling in an optical lattice

    Get PDF
    We study ultracold bosonic atoms with the synthetic three-dimensional spin-orbit (SO) coupling in a cubic optical lattice. In the superfluidity phase, the lowest energy band exhibits one, two or four pairs of degenerate single-particle ground states depending on the SO-coupling strengths, which can give rise to the condensate states with spin-stripes for the weak atomic interactions. In the deep Mott-insulator regime, the effective spin Hamiltonian of the system combines three-dimensional Heisenberg exchange interactions, anisotropy interactions and Dzyaloshinskii-Moriya interactions. Based on Monte Carlo simulations, we numerically demonstrate that the resulting Hamiltonian with an additional Zeeman field has a rich phase diagram with spiral, stripe, vortex crystal, and especially Skyrmion crystal spin-textures in each xy-plane layer. The obtained Skyrmion crystals can be tunable with square and hexagonal symmetries in a columnar manner along the z axis, and moreover are stable against the inter-layer spin-spin interactions in a large parameter region.Comment: 9 pages, 4 figures; title modified, references and discussions added; accepted by PR

    Analytical Model for the Rectangular Power-ground Structure Including Radiation Loss

    Get PDF
    An accurate analytical model to predict via coupling within rectangular power-return plane structures is developed. Loss mechanisms, including radiation loss, dielectric loss, and conductor loss, are considered in this model. The radiation loss is incorporated into a complex propagating wavenumber as an artificial loss mechanism. The quality factors associated with three loss mechanisms are calculated and compared. The effects of radiation loss on input impedances and reflection coefficients are investigated for both high-dielectric-loss and low-dielectric-loss printed circuit boards. Measurements are performed to validate the effectiveness of this model

    Cerebral hemodynamic characteristics of acute mountain sickness upon acute high-altitude exposure at 3,700 m in young Chinese men.

    Get PDF
    PURPOSE: We aimed at identifying the cerebral hemodynamic characteristics of acute mountain sickness (AMS). METHODS: Transcranial Doppler (TCD) sonography examinations were performed between 18 and 24 h after arrival at 3,700 m via plane from 500 m (n = 454). A subgroup of 151 subjects received TCD examinations at both altitudes. RESULTS: The velocities of the middle cerebral artery, vertebral artery (VA) and basilar artery (BA) increased while the pulsatility indexes (PIs) and resistance indexes (RIs) decreased significantly (all p < 0.05). Velocities of BA were higher in AMS (AMS+) individuals when compared with non-AMS (AMS-) subjects (systolic velocity: 66 ± 12 vs. 69 ± 15 cm/s, diastolic velocity: 29 ± 7 vs. 31 ± 8 cm/s and mean velocity, 42 ± 9 vs. 44 ± 10 cm/s). AMS was characterized by higher diastolic velocity [V d_VA (26 ± 4 vs. 25 ± 4, p = 0.013)] with lower PI and RI (both p = 0.004) in VA. Furthermore, the asymmetry index (AI) of VAs was significantly lower in the AMS + group [-5.7 % (21.0 %) vs. -2.5 % (17.8 %), p = 0.016]. The AMS score was closely correlated with the hemodynamic parameters of BA and the V d_VA, PI, RI and AI of VA. CONCLUSION: AMS is associated with alterations in cerebral hemodynamics in the posterior circulation rather than the anterior one, and is characterized by higher blood velocity with lower resistance. In addition, the asymmetry of VAs may be involved in AMS

    Combining radiofrequency ablation and ethanol injection may achieve comparable long-term outcomes in larger hepatocellular carcinoma (3.1–4 cm) and in high-risk locations

    Get PDF
    AbstractRadiofrequency ablation (RFA) is more effective for hepatocellular carcinoma (HCC) < 3 cm. Combining percutaneous ethanol injection and RFA for HCC can increase ablation; however, the long-term outcome remains unknown. The aim of this study was to compare long-term outcomes between patients with HCC of 2–3 cm versus 3.1–4 cm and in high-risk versus non-high-risk locations after combination therapy. The primary endpoint was overall survival and the secondary endpoint was local tumor progression (LTP). Fifty-four consecutive patients with 72 tumors were enrolled. Twenty-two (30.6%) tumors and 60 (83.3%) tumors were of 3.1–4 cm and in high-risk locations, respectively. Primary technique effectiveness was comparable between HCC of 2–3 cm versus 3.1–4 cm (98% vs. 95.5%, p = 0.521), and HCC in non-high risk and high-risk locations (100% vs. 96.7%, p = 1.000). The cumulative survival rates at 1 year, 3 years, and 5 years were 90.3%, 78.9%, and 60.3%, respectively, in patients with HCC of 2–3 cm; 95.0%, 84.4%, and 69.3% in HCC of 3.1–4.0 cm (p = 0.397); 90.0%, 71.1%, and 71.1% in patients with HCC in non-high-risk locations; and 92.7%, 81.6%, and 65.4% in high-risk locations (p = 0.979). The cumulative LTP rates at 1 year, 3 years, and 5 years were 10.2%, 32.6%, and 32.6%, respectively, in all HCCs; 12.6%, 33.9%, and 33.9% in HCC of 2–3 cm; 4.8%, 29.5%, and 29.5% in HCC of 3.1–4 cm (p = 0.616); 16.7%, 50.0%, and 50.0% in patients with HCC in non-high-risk locations; and 8.8%, 29.9%, and 29.9% in patients with HCC in high-risk locations (p = 0.283). The cumulative survival and LTP rates were not significantly different among the various subgroups. Combining RFA and percutaneous ethanol injection achieved comparable long-term outcomes in HCCs of 2–3 cm versus 3.1–4.0 cm and in high-risk versus non-high-risk locations. A randomized controlled or cohort studies with larger sample size are warranted
    corecore