
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 2005 

Analytical Model for the Rectangular Power-ground Structure Analytical Model for the Rectangular Power-ground Structure 

Including Radiation Loss Including Radiation Loss 

Ji Chen 

Todd H. Hubing 
Missouri University of Science and Technology 

Weimin Shi 

R. L. Chen 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
J. Chen et al., "Analytical Model for the Rectangular Power-ground Structure Including Radiation Loss," 
IEEE Transactions on Electromagnetic Compatibility, Institute of Electrical and Electronics Engineers 
(IEEE), Jan 2005. 
The definitive version is available at https://doi.org/10.1109/TEMC.2004.842204 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229180223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TEMC.2004.842204
mailto:scholarsmine@mst.edu


10 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 47, NO. 1, FEBRUARY 2005

Analytical Model for the Rectangular Power-Ground
Structure Including Radiation Loss

Richard L. Chen, Member, IEEE, Ji Chen, Member, IEEE, Todd H. Hubing, Senior Member, IEEE, and
Weimin Shi, Senior Member, IEEE

Abstract—An accurate analytical model to predict via coupling
within rectangular power-return plane structures is developed.
Loss mechanisms, including radiation loss, dielectric loss, and
conductor loss, are considered in this model. The radiation loss
is incorporated into a complex propagating wavenumber as an
artificial loss mechanism. The quality factors associated with
three loss mechanisms are calculated and compared. The effects of
radiation loss on input impedances and reflection coefficients are
investigated for both high-dielectric-loss and low-dielectric-loss
printed circuit boards. Measurements are performed to validate
the effectiveness of this model.

Index Terms—Power and ground-plane noise, quality factor, ra-
diation loss, via coupling.

I. INTRODUCTION

POWER and ground-plane noise, also known as simulta-
neous switching noise (SSN), inductive noise or Delta-I

noise, can appear in printed circuit board (PCB) and multichip
module (MCM) designs when a high-speed time-varying or a
transient current flows through a via [1]–[5]. Due to the via dis-
continuity, part of the power is transmitted into the substrate
and coupled to other devices on the PCB. The signal coupled
to other devices may cause signal integrity and electromagnetic
compatibility (EMC) issues [1]–[5]. As the clock frequency in-
creases and the rise time decreases, the likelihood of significant
mutual coupling occurring between a via and its neighboring
devices increases. The signal can also radiate into its environ-
ment and cause electromagnetic interference (EMI) problems
[6]. Therefore, to ensure successful designs of high-speed elec-
tronic products, it is important to develop modeling techniques
that can accurately estimate the mutual coupling between a via
and its surrounding devices and predict the PCB radiation due
to via discontinuities.

Power-return plane modeling has been carried out by using
analytical methods [1]–[3] and full-wave techniques [4], [5], [7].
The analytical methods use either the radial waveguide model
or the cavity model to extract the structure’s input impedance
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or mutual impedance. The computational cost of analytical ap-
proaches is typically much less than that of the full-wave tech-
niques and the underlying physical mechanism is also clearer.
Therefore, an analytical approach is preferred whenever it is
possible. However, to our knowledge, existing analytical ap-
proaches ignore radiation loss in the input impedance or mutual
impedance estimation. This approximation may lead to signif-
icant errors in the input impedance estimation for some PCB
structures. In [6], the radiated field of a rectangular power-re-
turn plane structure was investigated as an electromagnetic in-
terference problem, a strong radiation effect is observed at res-
onant frequencies. However, the effect of the radiation on the
via input impedance or the mutual impedance were not studied.
In [8], radiation effects on the input impedance were investi-
gated for a circular PCB structure. In the model, the radiation
loss is considered by introducing a nonzero surface admittance
around the cavity and is calculated using the spectral domain
immittance (SDI) approach [9]. The results showed that the ra-
diation loss cannot be neglected at the resonant frequencies,
particularly for thick substrate PCBs. Unfortunately, this ap-
proach is not directly applicable to the via discontinuity anal-
ysis for general power-return plane structures since the constant
edge impedance assumption is not valid for practical rectangular
structures.

The purpose of this paper is to introduce a more general ap-
proach to include the radiation loss in analyzing practical rect-
angular power-return plane structures. Rather than calculating
the location- and mode-dependent edge impedance on the pe-
riphery of the power-return plane [10], the effect of the radia-
tion loss is accounted for by assuming an equivalent loss in the
complex propagating wavenumber. The radiation loss is calcu-
lated by integrating the radiation fields of equivalent magnetic
currents on the edges of the PCBs.

The remainder of the paper is organized as follows. Section II
describes the development of the input impedance model and
mutual impedance that include dielectric loss, conductive loss,
and radiation loss. The procedure for calculating the radiation
loss quality factor is described in Section III. In Section IV, the
approach is applied to analyze the input impedance, reflection
coefficients and mutual impedance of two typical power-return
plane structures and results are compared with experimental
data. Conclusions are given in Section V.

II. INPUT IMPEDANCE MODEL

A typical rectangular power-return plane structure is shown
in Fig. 1. It consists of two metal plates with length, , and width,

0018-9375/$20.00 © 2005 IEEE
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Fig. 1. A rectangular power-return plane structure.

, and a dielectric slab (with a thickness of ) sandwiched be-
tween the two metal plates. The metal plates have a conductivity
of and the substrate has a relative dielectric constant of and
a loss tangent of . A via with a radius of is located at ( ,

) and a current source is impressed into the via. Another via
locates at ( , ) for mutual coupling consideration.

The power-return plane can be approximated by a cavity
model where the top and bottom walls are perfect electric con-
ductor (PEC) walls and the four side walls are perfect magnetic
conductor (PMC) walls [11]. Since the substrate is electrically
thin, only the transverse magnetic (TM) modes need to be
considered [11]. To account for the fringing effects, an effective
length, and an effective width, ,
are used. This simplified model, however might introduce a
slight resonant frequency deviation, especially at the high-fre-
quency end, as we will show in Section IV. Furthermore, the
edge extension is closely related to the stored energy and it is
also mode dependent. Hence, the simplified model can also
introduce small errors on radiation loss calculation. More
accurate empirical models for the effective length/width are
available in [12], [13], but they are derived for the dominant
mode and assumed to work for other modes. Therefore, the
simplified effective length–width model is used in this study.

The electric field in the rectangular cavity can be written as
[11]

(1)

where

(2)

represents a cavity mode supported by the structure.
The corresponding excitation coefficient is determined by the
inner product of the mode and the source, shown as

(3)

where is the driving current density,

and is the effective wave number given by [14]

(4)

In (4), and is the total loss factor due to three
loss mechanisms, including the conductor loss, the dielectric
loss, and the radiation loss. It is given by [14]

(5)

where stands for the total quality factor and , , and
represent the conductor loss, the dielectric loss and the radiation
loss. The three loss factors can be written as

(6)

(7)

and

(8)

where , , and represent quality factors of the conductor
loss, the dielectric loss, and the radiation loss. The conductor
and dielectric loss quality factors can be obtained as

(9)

and

(10)

where is the skin depth, given as

(11)

Assuming the total loss factor, , which is true for most
of the substrate due to the narrow-band nature of power-return
plane structures, applying the binomial expansion yields

(12)

As shown in the above equation, the three loss mechanisms are
represented by the imaginary parts in the complex wavenumber.
Neglecting the radiation loss yields the complex
wavenumber given in [1], [15], which is valid when the dielec-
tric loss or the conductor loss is dominant. However, when the
substrate is thick or low loss, the assumption is no longer valid
and the radiation loss has to be taken into consideration.

The impressed current on the via can be equivalently repre-
sented by an one-dimensional current (strip current) or a two-di-
mensional current (rectangular current) [1], [16]. In the one-di-
mensional current modeling, the via current is approximated
using a strip current with a width of , where
[16]. In the two-dimensional current modeling, the via current is
approximated using a square current with a side width of

[1]. Both models are valid if the via size is much smaller
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than that of the board size. For simplicity, we use the strip cur-
rent approximation in this study. Using this model, the driving
current density can be obtained by

(13)

Substituting (12) and (13) into (3) and then substituting (3) into
(1), one can obtain the input impedance as

(14)

where

(15)
and

(16)

In (13), is defined as

for
for

Substituting (9) into (6) and also (10) into (7), one can obtain the
dielectric loss factor and conductor loss factor directly. How-
ever, the radiation loss factor, still needs to be evaluated nu-
merically. In the next section, the steps to calculate the radiation
quality factor are described.

Similar to [17], the mutual impedance between the via at ( ,
) and the other via at ( , ) can be obtained as an integration

of Green’s function of the Helmholtz equation which satisfies
the second kind boundary condition, shown as

(17)

III. EVALUATION OF QUALITY FACTOR FOR RADIATION LOSS

The radiation loss quality factor in (8) can be determined
by using [18],

(18)

where is the electromagnetic energy stored inside the cavity
and is the power radiated from the cavity. The radiation loss
quality factor only needs to be evaluated at the power-return
plane’s resonant frequencies since the electric field in low loss
cavities is much stronger at these frequencies than that at the

off-resonance frequencies, as indicated in (3). With the low-loss
assumption, at the resonant frequency , the total electric
field can be approximated by the resonant mode as [6]

(19)

With this electric field distribution, the stored energy is obtained
by [18]

(20)

and the radiated power can be obtained by [19]

(21)

where

(22)

is the magnitude of Poynting vector. The transverse spherical
electric far-field components and can be calculated by
the analytical solutions given in the Appendix, as developed in
[6] by integration over the equivalent magnetic currents along
the edges of the parallel plates. Due to the complexity of the an-
alytical field expression for and , the integration in (22)
has to be performed numerically. Once the and are ob-
tained, the effect of radiation loss on the input impedance can
be evaluated by (18).

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, the developed modeling technique is applied
to two typical power-return plane structures. The section starts
with an investigation and comparison of the three types of loss
mechanisms. Then, the input impedance, reflection coefficient,
or mutual impedance is calculated and also validated by exper-
imental results.

A. Three Loss Mechanisms

To investigate the importance of radiation effects on input
impedance, the radiation loss factor, needs to be com-
pared with the other two loss factors, and . The first ex-
ample considered here is a FR4 test board with a dimension of
16 10 0.127 cm . The substrate has a relative dielectric
constant of 3.84 and a loss tangent of 0.019. The board is fed by
an SMA connector (with an inner radius of 6.25 10 cm) at
the location cm and cm. The conductivity
of copper used for the calculations was 5.813 10 S/m. The
loss factors for all three loss mechanisms are shown in Fig. 2. For
this board, the dominant loss is the dielectric loss ,
which is assumed to be a constant over the entire frequency range.
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Fig. 2. Calculated loss factors for a 16�10�0.127 cm power-ground plane
structure filled with FR4.

Fig. 3. Loss factors versus substrate thickness for a 16 cm � 10 cm
power-ground plane structure filled with FR4 at the TM mode resonance.

The conductor loss decreases inversely proportional to the
square root of frequency, and is in the range from 5.657 10
to1.415 10 . The radiation loss factor varies from
5.819 10 to 1.366 10 depending on the resonant
cavity mode order. In general, it is observed that radiation losses
associated with modes with and (such as ,

and modes) are much smaller than that of other
modes (such as , , and modes) with the
exception of mode. For mode, the radiation loss
factor goes as high as 5.819 10 . For this mode, the radiation
loss must be considered in the modeling.

The three loss mechanisms are then investigated as a func-
tion of substrate thickness. Figs. 3 and 4 show the loss factors
of and modes versus substrate thickness at the
resonant frequencies. Again, the dielectric loss is independent
of substrate thickness and modes. The conductor loss decreases
(inversely proportional to h, as shown in (6) and (10)) when the
substrate becomes thicker for both and modes. As
the substrate thickness increases, the magnitude of the equiva-
lent edge magnetic current, which is equivalent to edge voltage,
as shown in [6], increases and, hence, more power is radiated

Fig. 4. Loss factors versus substrate thickness for a 16 cm � 10 cm
power-ground plane structure filled with FR4 at the TM mode resonance.

Fig. 5. Loss factors for a 22�14�0.157 48 cm power-ground plane structure
filled with Rogers RT/duroid 5880.

into the free space. As a result, the radiation loss increases cor-
respondingly. In fact, (20) shows that the stored energy is pro-
portional to substrate thickness, . According to Appendix A,
spherical electric far-field components are also proportional to
substrate thickness and, hence, the radiated power is propor-
tional to , as shown in (21). The radiation quality factor is
therefore inversely proportional to substrate thickness and, con-
sequently, the radiation loss factor is proportional to substrate
thickness.

Fig. 3 shows the crossover point of radiation loss and
conductor loss for the mode is around mm.
Similarly, Fig. 4 shows the crossover point for the is
around mm. For thin substrates, radiation loss is
negligible compared to the dominant dielectric loss or even
negligible compared to the conductor loss. However, for thick
substrate, the radiation loss has to be taken into consideration.

The second example considered here is a low-dielectric-loss
high frequency material, Rogers RT/duroid 5880. The board size
is 22 cm 14 cm. The substrate is 0.157 48 cm (62 mil) thick
with a dielectric constant of 2.2 and a loss tangent of 0.0009.
Fig. 5 shows a plot of the three loss factors as a function of
frequency. In this case, the dielectric loss is very low, and, hence,



14 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 47, NO. 1, FEBRUARY 2005

Fig. 6. Magnitude of input impedance of a 22.86 � 15.24 � 0.1588 cm
power-ground plane structure filled with FR4.

the radiation loss and conductor loss become dominant factors.
In addition, due to the thick substrate, the radiation loss can be
much larger than the conductor loss at several resonant frequen-
cies. For example, at the resonance, the radiation loss
factor is greater than 0.01, which is far more important than both
conductor loss factor and dielectric loss factor. Therefore, radi-
ation loss must be considered for input impedance calculation.
It is also observed that the radiation loss of modes with
and is much less than that of other modes with either

or , except for mode.
Based on the above discussion, one can conclude that the ra-

diation loss is proportional to the substrate thickness and closely
related to the cavity mode order, while the conductor loss is
inversely proportional to the substrate thickness. For high di-
electric loss substrates, the dielectric loss is dominant. If the
substrate is thin, the radiation loss can be neglected. However,
when the substrate is thick (on the order of 1 mm), the radiation
loss should be considered for accurate impedance calculation.
For low dielectric loss substrates, the radiation loss and the con-
ductor loss can be dominant.

B. Input Impedance

Once the quality factors are obtained, the effective wave-
number can be calculated from (4) and (5). Substituting the
effective wavenumber into (14) yields the input impedance of
a rectangular power-return structure. To validate our model, a
FR4 board with a length of 22.86 cm and a width of 15.24 cm
is studied. The substrate thickness is 0.1588 cm and relative
dielectric constant is 4.1. The via locates at cm
and cm. The radius of via is 0.035 cm. The input
impedance is calculated with or without considering the radia-
tion loss. The results are compared with the measured data in
[20], as shown in Fig. 6. Due to the excitation position, only
three modes, , and are excited within the
frequency range. The predicted resonant frequencies are slightly
different from the measured results, which is due to the assump-
tion that the dielectric constant is frequency independent as well
as the simplified edge extension model. The first two modes do
not radiate much and, hence, the simulated data agree with the
measured data very well, even without considering the radiation
loss. For the third mode, neglecting the radiation loss introduces

Fig. 7. Magnitude of input impedance of a 16�10�0.127 cm power-ground
plane structure filled with FR4.

Fig. 8. Reflection coefficients for a 22 � 14 � 0.157 48 cm power-ground
plane structure filled with Rogers RT/duroid 5880.

a 4.90% error in impedance prediction. With the radiation loss
consideration, the error reduces to 0.35%.

The input impedance of the FR4 board, which was described
in Fig. 2, is also studied. The magnitude of input impedance is
shown in Fig. 7. Only four modes are excited within the simu-
lated frequency range due to the excitation position. Since the
dominant dielectric loss is very strong, the radiation loss can be
neglected for most of the modes, except for mode. For

mode, neglecting the radiation loss can cause about 20%
error in the input impedance estimation. This can be explained
by comparing the loss factors of both dielectric loss and radia-
tion loss for the in Fig. 2. As shown in the figure, the radi-
ation loss factor is a third of the dielectric loss factor. Therefore,
it contributes significantly to the input impedance estimation.

Next, the RT/duroid board, which has a low dielectric loss is
investigated. The via is located at cm and .
The reflection coefficient of the RT/duroid board is studied nu-
merically and experimentally. The magnitude of reflection coef-
ficient is shown in Fig. 8. At this via position, only seven modes
are excited in a frequency range from 100 MHz to 2.1 GHz. As
shown in the figure, without considering the radiation loss, the
reflection coefficients are overestimated. This error could be sig-
nificant depending on the operating modes, such as the second
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Fig. 9. Mutual impedance between pointx = 5:5 cm, y = 3:5 cm and point
x = 10:5 cm, y = 12:5 cm on a 22 � 14 � 0.157 48 cm power-ground
plane structure filled with Rogers RT/duroid 5880.

mode shown in the figure. When the radiation loss is considered
at resonance frequencies, a better agreement can be observed. In
particular, the first two modes match the measured data closely.

The figure also shows that the predicted resonance frequen-
cies are lower than the measured resonance frequencies, espe-
cially at the high-frequency end. It is due to the approximation
of fringing field compensation. The fringing field consideration
also affects the estimation of reflection coefficients at the reso-
nant frequencies. Furthermore, the assumption that the dielec-
tric constant is independent on the frequency can also be one
of the reasons responsible to the deviation. Currently, we are
developing mode-dependent model to approximate the fringing
effect and investigating the application of impedance boundary
condition to improve the accuracy of input impedance estima-
tion at high frequencies.

Fig. 9 shows the mutual impedance between a via at (
cm, cm) and the other via at ( cm,

cm). As shown in the figure, without considering the
radiation loss, the magnitudes of mutual impedance are overes-
timated. This error could be significant depending on the oper-
ating modes.

V. CONCLUSION

The radiation effect on via coupling in a rectangular
power-return plane was studied. The radiation loss quality
factor was investigated and compared to the dielectric loss and
conductor loss quality factors. Numerical and experimental
investigations were performed to demonstrate the radiation ef-
fects on via-to-substrate coupling for both high-dielectric-loss
and low-dielectric-loss substrates. Theoretical analysis showed
that the conductor loss is inversely proportional to the substrate
thickness and the radiation loss is proportional to the sub-
strate thickness. It was observed that without considering the
radiation loss, the cavity model input impedance calculation
can exhibit significant errors for low-dielectric-loss PCBs.
For high-dielectric-loss PCBs, the dielectric loss is dominant.
Hence, for thin substrates, the radiation loss is negligible. For
thick substrates (substrate thickness on the order of 1 mm),
the radiation loss, however, may become comparable to the
dielectric loss and, hence, radiation effects must be considered

in order to accurately predict the coupled noise. Results also
show that the modes with and generally exhibited
lower radiation loss than that of the modes with either
or .

APPENDIX

EVALUATION OF RADIATED POWER FROM

POWER-RETURN PLANES

For completeness, the equations for the radiation power cal-
culation are listed. They are developed in [6].

The far field from the power-return plane radiation can be
described by

(A1)

where

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

and

(A8)
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