57,362 research outputs found
Proximity induced pseudogap in mesoscopic superconductor/normal-metal bilayers
Recent scanning tunneling microscopy measurements of the proximity effect in
Au/LaSrCuO and
LaSrCuO/LaSrCuO bilayers showed a
proximity-induced pseudogap [Yuli et al., Phys. Rev. Lett. {\bf 103}, 197003
(2009)]. We describe the proximity effect in mesoscopic
superconductor/normal-metal bilayers by using the Bogoliubov-de Gennes
equations for a tight-binding Hamiltonian with competing antiferromagnetic and
d-wave superconductivity orders . The temperature dependent local density of
states is calculated as a function of the distance from the interface. Bound
state due to both d-wave and spin density wave gaps are formed in the normal
metal for energies less than the respective gaps. If there is a mismatch
between the Fermi velocities in the two layers we observe that these states
will shift in energy when spin density wave order is present, thus inducing a
minigap at finite energy. We conclude that the STM measurement in the proximity
structures is able to distinguish between the two scenarios proposed for the
pseudogap (competing or precursor to superconductivity)
A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers
This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system
The reduction of the closest disentangled states
We study the closest disentangled state to a given entangled state in any
system (multi-party with any dimension). We obtain the set of equations the
closest disentangled state must satisfy, and show that its reduction is
strongly related to the extremal condition of the local filtering on each
party. Although the equations we obtain are not still tractable, we find some
sufficient conditions for which the closest disentangled state has the same
reduction as the given entangled state. Further, we suggest a prescription to
obtain a tight upper bound of the relative entropy of entanglement in two-qubit
systems.Comment: a crucial error was correcte
Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid
We propose an experiment to directly probe the non-Abelian statistics of
Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms.
We show different orders of braiding operations give orthogonal output states
that can be distinguished through Raman spectroscopy. Realization of Majorana
bound states in an s-wave superfluid requires strong spin-orbital coupling and
a controllable Zeeman field in the perpendicular direction. We present a simple
laser configuration to generate the artificial spin-orbital coupling and the
required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add
ref
Nodeless superconductivity in the noncentrosymmetric MoRhN superconductor: a SR study
The noncentrosymmetric superconductor MoRhN, with K,
adopts a -Mn-type structure (space group 432), similar to that of
MoAlC. Its bulk superconductivity was characterized by magnetization
and heat-capacity measurements, while its microscopic electronic properties
were investigated by means of muon-spin rotation and relaxation (SR). The
low-temperature superfluid density, measured via transverse-field (TF)-SR,
evidences a fully-gapped superconducting state with , very close to 1.76 - the BCS gap value for
the weak coupling case, and a magnetic penetration depth nm.
The absence of spontaneous magnetic fields below the onset of
superconductivity, as determined by zero-field (ZF)-SR measurements, hints
at a preserved time-reversal symmetry in the superconducting state. Both TF-and
ZF-SR results evidence a spin-singlet pairing in MoRhN.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid
Communication in Phys. Rev.
- …