57,230 research outputs found

    Experimental tests on the lifetime Asymmetry

    Full text link
    The experimental test problem of the left-right polarization-dependent lifetime asymmetry is discussed. It shows that the existing experiments cannot demonstrate the lifetime asymmetry to be right or wrong after analyzing the measurements on the neutron, the muon and the tau lifetime, as well as the g−2g-2 experiment. However, It is pointed out emphatically that the SLD and the E158 experiments, the measurements of the left-right integrated cross section asymmetry in ZZ boson production by e+e−e^+e^- collisions and by electron-electron M{\o}ller scattering, can indirectly demonstrate the lifetime asymmetry. In order to directly demonstrate the lifetime asymmetry, we propose some possible experiments on the decays of polarized muons. The precise measurement of the lifetime asymmetry could have important significance for building a muon collider, also in cosmology and astrophysics. It would provide a sensitive test of the standard model in particle physics and allow for exploration of the possible V+AV+A interactions.Comment: 11 pages, 1 figur

    Polar codes and polar lattices for the Heegard-Berger problem

    Get PDF
    Explicit coding schemes are proposed to achieve the rate-distortion function of the Heegard-Berger problem using polar codes. Specifically, a nested polar code construction is employed to achieve the rate-distortion function for doublysymmetric binary sources when the side information may be absent. The nested structure contains two optimal polar codes for lossy source coding and channel coding, respectively. Moreover, a similar nested polar lattice construction is employed when the source and the side information are jointly Gaussian. The proposed polar lattice is constructed by nesting a quantization polar lattice and a capacity-achieving polar lattice for the additive white Gaussian noise channel

    A simple encoding of a quantum circuit amplitude as a matrix permanent

    Full text link
    A simple construction is presented which allows computing the transition amplitude of a quantum circuit to be encoded as computing the permanent of a matrix which is of size proportional to the number of quantum gates in the circuit. This opens up some interesting classical monte-carlo algorithms for approximating quantum circuits.Comment: 6 figure

    Left-Right Asymmetry of Weak Interaction Mass of Polarized Fermions in Flight

    Full text link
    The left-right polarization-dependent asymmetry of the weak interaction mass is investigated. Based on the Standard Model, the calculation shows that the weak interaction mass of left-handed polarized fermions is always greater than that of right-handed polarized fermions in flight with the same velocity in any inertial frame. The asymmetry of the weak interaction mass might be very important to the investigation of neutrino mass and would have an important significance for understanding the parity nonconservation in weak interactions.Comment: 8 pages, 2 figures, corrected calculatio

    Hecke algebras with unequal parameters and Vogan's left cell invariants

    Full text link
    In 1979, Vogan introduced a generalised tau\\tau -invariant for characterising primitive ideals in enveloping algebras. Via a known dictionary this translates to an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a complete invariant, it is extremely useful in describing left cells. Here, we propose a general framework for defining such invariants which also applies to Hecke algebras with unequal parameters.Comment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1405.573

    Flavour symmetry breaking in the kaon parton distribution amplitude

    Get PDF
    We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincare'-covariant Bethe-Salpeter wave-function onto the light-front. At a scale \zeta=2GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12-16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on the difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/Fπ=1.23F_K/F_\pi=1.23 at spacelike-Q2=17 GeV2Q^2=17\,{\rm GeV}^2, which compares satisfactorily with the value of 0.92(5)0.92(5) inferred in e+e−e^+ e^- annihilation at s=17 GeV2s=17\,{\rm GeV}^2.Comment: 7 pages, 2 figures, 3 table

    SU(4) Theory for Spin Systems with Orbital Degeneracy

    Full text link
    The isotropic limit of spin systems with orbital degeneracy is shown to have global SU(4) symmetry. On many 2D lattices, the ground state does not posses long range order, which may explain the observed spin liquid properties of LiNiO2LiNiO_2. In the SU(4) Neel ordered state, spin-spin correlations can be antiferromagneitc between two neighboring sites with parallel magnetic moments.Comment: 11 pages, 2 figures. submitted to PR

    Anti-lecture Hall Compositions and Overpartitions

    Full text link
    We show that the number of anti-lecture hall compositions of n with the first entry not exceeding k-2 equals the number of overpartitions of n with non-overlined parts not congruent to 0,±10,\pm 1 modulo k. This identity can be considered as a refined version of the anti-lecture hall theorem of Corteel and Savage. To prove this result, we find two Rogers-Ramanujan type identities for overpartition which are analogous to the Rogers-Ramanjan type identities due to Andrews. When k is odd, we give an alternative proof by using a generalized Rogers-Ramanujan identity due to Andrews, a bijection of Corteel and Savage and a refined version of a bijection also due to Corteel and Savage.Comment: 16 page
    • …
    corecore