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We compute the kaon’s valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its 
Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ = 2 GeV, the PDA is 
a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD’s 
conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show 
that the heavier quark in the kaon carries more of the bound-state’s momentum than the lighter quark 
and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is 
markedly smaller than one might expect based on the difference between light-quark current masses. 
Our results add to a body of evidence which indicates that at any energy scale accessible with existing 
or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such 
nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes 
instead of the asymptotic PDA associated with QCD’s conformal limit. We illustrate this via the ratio 
of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate 
formulae, F K /Fπ = 1.23 at spacelike-Q 2 = 17 GeV2, which compares satisfactorily with the value of 
0.92(5) inferred in e+e− annihilation at s = 17 GeV2.

© 2014 Argonne National Laboratory and the authors. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Kaons are strong-interaction bound-states defined by their 
valence-quark content: a ū- or d̄-quark combined with the s-quark, 
or the opposite antiparticle-particle combination. The current-mass 
of the u/d-valence-quark is truly light but that of the s-quark has 
a value commensurate with ΛQCD, QCD’s dynamically-generated 
mass-scale. As we shall describe, this marked imbalance between 
current-masses provides at least two compelling reasons for study-
ing kaons. However, given that the s-quark is neither light nor 
heavy, elucidating the impact of the imbalance is challenging be-
cause it requires the use of nonperturbative techniques within 
QCD.

The first thing one would like to explore originates in the ob-
servation that with the introduction of the quark model as a classi-
fication scheme for the hadron spectrum [1,2] it became common 
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0370-2693/© 2014 Argonne National Laboratory and the authors. Published by Elsevier 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
to assume, in the absence of reliable dynamical information to the 
contrary, that hadron wave functions and interaction currents ex-
hibit SU(2) ⊗ SU(3) spin-flavour symmetry. That assumption has 
implications for numerous observables, including the hadron spec-
trum itself and a host of other static and dynamical properties. 
Moreover, in an asymptotically free gauge field theory with Nc

colours, this symmetry is exact on 1/Nc � 0 [3]. Kaons therefore 
provide the simplest system in which the accuracy of these as-
sumptions and predictions can be tested.

The second aspect convolves the first challenge with the fact 
that, as strong interaction bound states whose decay is mediated 
only by the weak interaction, so that they have a relatively long 
lifetime, kaons have been instrumental in establishing the founda-
tion and properties of the Standard Model; notably, the physics 
of CP violation. In this connection the nonleptonic decays of B
mesons are crucial because, e.g., the transitions B± → (π K )± and 
B± → π±π0 provide access to the imaginary part of the CKM ma-
trix element V ub: γ = Arg(V ∗

ub) [4]. Factorisation theorems have 
B.V. This is an open access article under the CC BY license 
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been derived and are applicable to such decays [5]. However, 
the formulae involve a certain class of so-called “non-factorisable” 
corrections because the parton distribution amplitudes (PDAs) of 
strange mesons are not symmetric with respect to quark and an-
tiquark momenta. Therefore, any derived estimate of γ is only as 
accurate as the evaluation of both the difference between K and π
PDAs and also their respective differences from the asymptotic dis-
tribution, ϕasy(u) = 6u(1 − u). Amplitudes of twist-two and -three 
are involved. With this motivation, we focus on the twist-two am-
plitudes herein.

Historically, the difficulty with placing constraints on this sort 
of nonfactorisable contribution is that methods such as lattice 
gauge theory, QCD sum rules and large-Nc provide little informa-
tion about the QCD dynamics relevant to hadronic B-decays. We 
therefore employ QCD’s Dyson–Schwinger equations, whose value 
in the computation of valence-quark distribution amplitudes has 
recently been established [6–10].

One of the key features to emerge from Refs. [6–10] is the cru-
cial role played by dynamical chiral symmetry breaking (DCSB) in 
shaping PDAs. DCSB is a remarkable emergent feature of the Stan-
dard Model. It plays a critical role in forming the bulk of the visible 
matter in the Universe [11] and is expressed in numerous aspects 
of the spectrum and interactions of hadrons; e.g., the large splitting 
between parity partners [12–14] and the existence and location of 
a zero in some hadron elastic and transition form factors [15,16]. 
The impact of DCSB is expressed with particular force in proper-
ties of light pseudoscalar mesons. Indeed, their very existence as 
the lightest hadrons is grounded in DCSB.

2. Computing the kaon twist-two PDA

The kaon’s valence-quark distribution amplitude may be ob-
tained via

f K ϕK (u) = Nc tr Z2

Λ∫
dq

δ(n · qη − un · P )γ5γ · nχ P
K (qη,qη̄), (1)

where: Nc = 3; f K is the kaon’s leptonic decay constant; the trace 
is over spinor indices; 

∫ Λ

dq is a Poincaré-invariant regularisation
of the four-dimensional integral, with Λ the ultraviolet regulari-
sation mass-scale; Z2(ζ, Λ), with ζ the renormalisation scale, is 
the quark wave-function renormalisation constant computed using 
a mass-independent renormalisation scheme [17]; n is a light-like 
four-vector, n2 = 0; P is the kaon’s four-momentum, P 2 = −m2

K
and n · P = −mK , with mK being the kaon’s mass; and (qηη̄ =
[qη + qη̄]/2)

χ P
K (qη,qη̄) = Ss(qη)ΓK (qηη̄; P )Su(qη̄), (2)

is the kaon’s Poincaré-covariant Bethe–Salpeter wave-function, 
with ΓK the Bethe–Salpeter amplitude, Ss,u the dressed s- and 
u-quark propagators, which take the form

S f =s,u(q) = −iγ · pσ
f

V

(
q2) + σ

f
S

(
q2) (3a)

= Z f
(
q2)/[iγ · p + M f

(
p2)], (3b)

and qη = q + ηP , qη̄ = q − (1 − η)P , η ∈ [0, 1]. Owing to Poincaré 
covariance, no observable can legitimately depend on η; i.e., the 
definition of the relative momentum.

With χ P
K in hand, it is straightforward to generalise the proce-

dure explained and employed in Ref. [6], and thereby obtain ϕK (u)

from Eq. (1). One first computes the moments

〈
um

�

〉 =
1∫

du (2u − 1)mϕK (u), (4)
0

which, using Eq. (1), can be obtained via

f K (n · P )m+1〈um
�

〉

= Nc tr Z2

Λ∫
dq

(2n · qη − n · P )mγ5γ · nχ P
π (qη,qη̄). (5)

Notably, beginning with an accurate form of χ P
K , arbitrarily many 

moments can be computed so that ϕK (u) can reliably be recon-
structed using the method we now describe.

Since the kaon is composed from valence-quarks with unequal 
current-masses, then ϕK (u) �= ϕK (1 − u) and all moments pro-
duced by Eq. (5) are nonzero. (The asymmetry disappears with 
the difference between current-quark masses: with mass degen-
eracy, the odd-m moments vanish, as occurs, e.g., for the π -, ρ-
and φ-mesons [6,18].) It follows that one may write

ϕK (u) = ϕE
K (u) + ϕO

K (u), (6a)

ϕE,O
K (u) = (1/2)

[
ϕK (u) ± ϕK (1 − u)

]
. (6b)

In this form, the nonzero moments of ϕE
K (u) reproduce all the 

m-even moments of ϕK and the nonzero moments of ϕO
K (u) are 

the m-odd moments of ϕK .
Consider now that Gegenbauer polynomials of order α,

{Cα
n (2u − 1) | n = 0, . . . , ∞}, are a complete orthonormal set on 

u ∈ [0, 1] with respect to the measure [u(1 − u)]α− , α− = α − 1/2. 
They therefore enable reconstruction of any function defined on 
u ∈ [0, 1] that vanishes at the endpoints; and hence, with complete 
generality and to a level of accuracy defined by the summation up-
per bounds,

ϕE,O
K (u) ≈ mϕE,O

K (u), (7)

where

mϕE
K (u) = Nᾱ

[
u(1 − u)

]ᾱ−
j̄max∑

j=0,2,4,...

aᾱ
j C ᾱ

j (2u − 1), (8a)

mϕO
K (u) = Nα̂

[
u(1 − u)

]α̂−
ĵmax+1∑

j=1,3,...

aα̂
j C α̂

j (2u − 1), (8b)

Nα = Γ (2α + 1)/[Γ (α + 1/2)]2 and aᾱ
0 = 1. In general, ᾱ �= α̂ be-

cause ϕE
K (u) and ϕO

K (u) are orthogonal components of ϕK (u).
At this point, from a given set of 2mmax moments computed via 

Eq. (5), the even and odd component-PDAs are determined inde-
pendently by separately minimising

εE
m =

∑
l=2,4,...,2mmax

∣∣〈ul
�

〉E
m/

〈
ul

�

〉 − 1
∣∣, (9a)

εO
m =

∑
l=1,3,...,2mmax−1

∣∣〈ul
�

〉O
m/

〈
ul

�

〉 − 1
∣∣, (9b)

over the sets {ᾱ, a2, a4, . . . , a jmax}, {α̂, a1, a3, . . . , a jmax+1}, where

〈
ul

�

〉E,O
m =

1∫
0

du (2u − 1)l
mϕE,O

K (u). (10)

This procedure acknowledges that at all empirically accessible 
scales the pointwise profile of PDAs is determined by nonperturba-
tive dynamics [6–10,19]; and hence they should be reconstructed 
from moments by using Gegenbauer polynomials of order α, with 
the order α determined by the moments themselves, not fixed 
beforehand. In the case of π -, ρ- and φ-mesons, this procedure 
converges rapidly: jmax = 2 is sufficient [6,18].
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Fig. 1. Functions characterising the dressed quark propagator in the DB truncation. 
Upper panel. u/d-quark functions, σ u/d

S,V (p2) – solution (open circles and squares, re-
spectively) and interpolation functions (solid and long-dashed curves, respectively). 
Lower panel. s-quark functions, σ s

S,V (p2). The same legend.

3. Results for the kaon twist-two PDA

We solved the s- and u- quark gap equations and the kaon 
Bethe–Salpeter equation numerically using the interaction in 
Ref. [20]. The infrared composition of this interaction is deliber-
ately consistent with that determined in modern studies of QCD’s 
gauge sector [21–26]; and, in the ultraviolet, it preserves the one-
loop renormalisation group behaviour of QCD so that, e.g., the 
dressed-quark mass-functions Ms,u(p2) =σ s,u

S (p2, ζ 2)/σ s,u
V (p2, ζ 2), 

are independent of the renormalisation point, which we choose to 
be ζ = 2 GeV =: ζ2. In completing the gap and Bethe–Salpeter 
kernels we employ two different procedures and compare their 
results: rainbow-ladder truncation (RL), detailed in Appendix A.1 
of Ref. [27], which is the most widely used DSE computational 
scheme in hadron physics, whose strengths and weakness are can-
vassed elsewhere [19,28–30]; and the modern DCSB-improved ker-
nels (DB) detailed in Appendix A.2 of Ref. [27], which are the most 
refined kernels currently available [12,13,19,31]. Both schemes are 
symmetry-preserving but the latter introduces essentially nonper-
turbative DCSB effects into the kernels, which are omitted in RL 
truncation and any stepwise improvement thereof. The DB kernel 
is thus the more realistic.

The gap and Bethe–Salpeter equation solutions are obtained as 
matrix tables of numbers. Computation of the moments in Eq. (5)
is cumbersome with such input, so we employ algebraic parametri-
sations of each array to serve as interpolations in evaluating the 
moments. For the quark propagators, we represent σV ,S as mero-
morphic functions with no poles on the real p2-axis [32], a feature 
consistent with confinement as defined through the violation of 
reflection positivity [19,29,30,33–36]. Each scalar function in the 
kaon’s Bethe–Salpeter amplitude is expressed via a Nakanishi-like 
representation [37–39], with parameters fitted to that function’s 
first four q · P Chebyshev moments. The quality of the description 
is illustrated via the dressed-quark propagator in Fig. 1; and details 
are presented in Appendix A.

Using the interpolating spectral representations, it is straight-
forward to compute arbitrarily many moments of the kaon’s PDAs 
via Eqs. (5). We typically employ 2mmax = 50. The pointwise forms 
of the PDAs are then reconstructed via the “Gegenbauer-α” proce-
dure described in connection with Eqs. (7)–(10) above. Again, the 
Fig. 2. Upper panel – Kaon’s twist-two valence-quark parton distribution amplitude. 
Solid curve (black) – result obtained with DB kernel; dot-dashed curve (blue) – RL 
kernel; dashed line and band (green) – result in Eq. (13), inferred from two non-
trivial moments obtained using lattice-QCD [10]. Lower panel – Comparison between 
DB kernel results for the PDAs of the kaon (solid, black) and pion (dot-dashed, red). 
The “best fit” lattice-QCD result in Eq. (13) is also shown (dashed, green) along with 
the asymptotic PDA: ϕasy(u) = 6u(1 − u) (dotted, dark-blue).

procedure converges rapidly, so that results obtained with jmax = 2
produce εE,O

m < 1%.
Our results, computed at the renormalisation scale ζ2 and de-

picted in Fig. 2, are described by:

ϕK (u) = mϕE
K (u) + mϕO

K (u) (11)

with the functions defined in Eqs. (9) and

ᾱ α̂ aᾱ
2 aα̂

1 aα̂
3

RL 0.68 0.65 −0.32 0.27 0.054
DB 1.42 1.14 0.074 0.076 0.011

. (12)

To assist in making comparisons with results obtained using 
other methods, we list the lowest six moments computed using 
Eqs. (11), (12) in Table 1. In considering Table 1, it should be borne 
in mind that only our study and those using lattice-QCD can un-
ambiguously determine the scale at which the calculation is valid: 
the lattice results were also obtained at ζ2. Sum-rules studies, on 
the other hand, are described as being defined at a characteristic 
hadronic scale, which is typically chosen to be the average value 
of the Borel parameter in the stability window of the sum rule: 
m2

ρ � ζ 2 � 2m2
ρ .

In Table 1 we also list all moments of the kaon’s PDA that can 
be computed with contemporary algorithms via numerical simu-
lations of lattice-regularised QCD [40,41]. Working with the most 
recent results [41] and using the method introduced in Refs. [6–8], 
which is founded in Bayesian analysis, one can obtain a reliable 
pointwise approximation to the kaon’s PDA from this limited in-
formation. The result is a concave function, represented by [10]

ϕK (u) = Nαβuα(1 − u)β, αsu = 0.48+0.19
−0.16,

βsu = 0.38+0.17
−0.15, (13)

where Nαβ = 1/B(1 + α, 1 + β). This function and the associated 
error band are depicted in Fig. 2.



C. Shi et al. / Physics Letters B 738 (2014) 512–518 515
Table 1
Moments (u� = 2u − 1) of the K -meson PDA computed using Eqs. (11) and 
(12), compared with selected results obtained elsewhere: Refs. [40,41], lattice-QCD; 
Ref. [10], analysis of lattice-QCD results in Ref. [41]; Refs. [42–46], compilation of re-
sults from QCD sum rules; and Ref. [47], holographic soft-wall Ansatz for the kaon’s 
light-front wave function. We also list values obtained with ϕ = ϕasy, Eq. (14), and 
ϕ = ϕms, Eq. (16), because they represent lower and upper bounds, respectively, for 
concave distribution amplitudes.

〈um
�〉 m = 1 2 3 4 5 6

RL 0.11 0.24 0.064 0.12 0.045 0.076
DB 0.040 0.23 0.021 0.11 0.013 0.063

[40] 0.027(2) 0.26(2)
[41] 0.036(2) 0.26(2)
[10] 0.036(2) 0.26(2) 0.020(2) 0.13(2) 0.014(2) 0.085(15)

[42–46] 0.035(8)
[47] 0.04(2) 0.24(1)

ϕ = ϕms 0.33 0.33 0.2 0.2 0.14 0.14
ϕ = ϕasy 0 0.2 0 0.086 0 0.048

It is useful to provide limits on the allowed values of the mo-
ments in Table 1. In the present context, two extremes are pos-
sible. As the scale ζ → ∞, ϕK (u) → ϕasy(u), so the moments of 
ϕasy(u) provide a lower bound for any reasonable PDA:

1∫
0

du (2u − 1)mϕasy(u) = 3(1 + (−1)m)

2(m + 1)(m + 3)
. (14)

On the other hand, the most skewed concave distribution ampli-
tude possible is obtained via

ϕms(u) := lim
α→1,β→0

Nαβuα(1 − u)β = 2u; (15)

and hence the moments of ϕms(u) provide an upper bound:

1∫
0

du (2u − 1)mϕms(u) = 2m + 3 + (−1)m

2(m + 1)(m + 2)
. (16)

Notably, the even moments obtained with Eq. (16) are those of 
the distribution amplitude ϕ(u) = constant, the odd moments of 
which vanish. We list the limiting moments in Table 1.1

There are a number of important messages to be read from 
Fig. 2. The upper panel shows that the kaon distribution is skewed: 
the RL amplitude peaks at u = 0.56; DB at u = 0.58; and the re-
sult inferred from lattice-QCD peaks at u = 0.56+0.02

−0.01. In a meson 
constituted from valence-quarks with equal current-mass, the dis-
tribution amplitude is symmetric and peaks at u = 1/2. The unam-
biguous conclusion is that, on the light-front, the s-quark carries 
more of the kaon’s momentum than the ū quark.

This 12–16% shift in peak location is a quantitative mea-
sure of SU(3)-flavour-symmetry breaking in hadrons. It is com-
parable with the 15% shift in the peak of the kaon’s valence 
s-quark parton distribution function, sK

v (x), relative to uK
v (x) [48]

and the ratio of neutral- and charged-kaon electromagnetic form 
factors measured in e+e− annihilation at sU = 17.4 GeV2 [49]: 
|F K S KL (sU )|/|F K− K+ (sU )| ≈ 0.12. By way of context, it is notable 
that the ratio of s-to-u current-quark masses is approximately 27
[50], whereas the ratio of nonperturbatively generated Euclidean 
constituent-quark masses is typically 1.5 [14] and the ratio of 

1 The association of Eq. (15) with a maximally skewed distribution is further clar-
ified by noting that this PDA is produced by using ρ0(α) → δ(1 − α) =: ρms(α) in 
Eq. (A4) and setting n0 = 1, U1 = 0 = U2. With this choice of spectral function, all 
the bound-state’s momentum is plainly lodged with the valence quark.
leptonic decay constants f K / fπ ≈ 1.2 [50]. Both latter quantities 
are equivalent order parameters for DCSB. Moreover, a DSE-based 
computation of leptonic decay constant ratios yields f Bs / f B = 1.2
[51], in accord with a recent result from unquenched lattice-QCD 
f Bs / f B = 1.22(8) [52], and the same DSE framework produces 
f +

B K (0)/ f +
Bπ (0) = 1.21 for the ratio of B → K , π semileptonic tran-

sition form factors at the maximum recoil point, a value that is 
typical for estimates of this quantity: the results in Refs. [53–59]
may be summarised as f +

B K (0)/ f +
Bπ (0) = 1.26(5). It is therefore 

apparent that the flavour-dependence of DCSB rather than explicit 
chiral symmetry breaking is measured by the skewness of ϕK (u): 
SU(3)-flavour-symmetry breaking is far smaller than one might 
naïvely have expected because DCSB impacts heavily on u, d- and 
s-quarks.

Focusing on the DSE results in the upper panel of Fig. 2, one 
observes that the RL PDA is more skewed than the DB result; viz., 
the RL truncation allocates a significantly larger fraction of the 
kaon’s momentum to its valence s-quark. This feature is also high-
lighted by comparing the RL and DB results for the moments in 
Table 1: the m = 1, 3, 5 RL moments are noticeably larger than the 
odd moments obtained with the DB kernel; and all RL moments 
are closer to the upper bound expressed in Eq. (16). This is read-
ily understood. RL-kernels ignore DCSB in the quark–gluon vertex. 
Therefore, to describe a given body of phenomena, they must shift 
all DCSB strength into the infrared behaviour of the dressed-quark 
propagator, whilst nevertheless maintaining perturbative behaviour 
for p2 > ζ 2

2 . This requires Ms,u(p2) to be unnaturally large at 
p2 = 0 and then drop quickly with increasing p2, behaviour which 
influences ϕK (u) via the Bethe–Salpeter equation. In contrast, the 
DB-kernel builds DCSB into the quark–gluon vertex and its im-
pact is therefore shared between more elements of a calculation. 
Hence smaller values of Ms,u(p2 = 0) are capable of describing the 
same body of phenomena; and these dressed-masses need fall less 
rapidly in order to reach the asymptotic limits they share with the 
RL self-energies. The DB kernel therefore produces a more bal-
anced expression of DCSB’s impact on a meson’s Bethe–Salpeter 
wave function and hence the PDA derived therefrom provides a 
more realistic expression of DCSB-induced skewness: it provides 
the most realistic result. The behaviour of the even moments has 
a similar origin.

The preceding observations enable us to highlight a final fea-
ture of the upper panel in Fig. 2; namely, the agreement between 
the DB result for the kaon’s PDA and that inferred from lattice-
QCD. The DB result is determined by one parameter, whose role 
is to express the infrared strength of the gap equation’s kernel 
and whose value was chosen to reproduce the value of fπ , the 
pion’s leptonic decay constant. The same DB kernel describes a 
wide range of hadron physics observables [6,13] and no parame-
ters were varied in order to produce the results described herein. 
Therefore, the match between the DSE-DB result and that inferred 
from lattice-QCD suggests strongly that we have now arrived at a 
reliable form of the kaon’s PDA and an understanding of flavour 
symmetry breaking therein.

The lower panel of Fig. 2 facilitates a comparison between the 
kaon’s twist-two PDA and that obtained for the pion using the 
same kernel [6]. Plainly, at the scale ζ2 the kaon’s PDA possesses 
dilation of the same magnitude as that present in ϕπ (u): both are 
significantly broader than the asymptotic PDA for mesons, ϕasy(u). 
This hardness of the distributions at a hadronic scale is a direct ex-
pression of DCSB. As shown elsewhere [7,10,19], it persists to en-
ergy scales ζ that exceed those available even at the large hadron 
collider. Consequently, ϕasy(u) cannot be used to obtain reliable 
estimates for observable quantities at any energy scale that is cur-
rently conceivable in connection with terrestrial facilities. Instead, 
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the DCSB-dilated amplitudes should be used to obtain such infor-
mation.

As an illustration, consider the ratio of kaon and pion electro-
magnetic form factors, which has been measured in e+e− annihi-
lation on a large domain, with an upper bound of sU = 17.4 GeV2

[60]: |F K (sU )|/|Fπ (sU )| = 0.92(5). At leading-order and leading 
twist, perturbative QCD (pQCD) predicts [61–64]:

∃Q 0 > ΛQCD | Q 2 F P
(

Q 2) Q 2>Q 2
0≈ 16παs

(
Q 2) f 2

P w 2
ϕP

, (17)

with Q 2 spacelike and

w 2
ϕP

= eq1 w 2
ϕq1

+ eq̄2 w 2
ϕq2

, (18a)

wϕq1
= 1

3

1∫
0

du
1

1 − u
ϕP (x), wϕq2

= 1

3

1∫
0

du
1

u
ϕP (u), (18b)

where αs(Q 2) is the strong running coupling, f P is the meson’s 
leptonic decay constant and ϕP (x) is its PDA, and eq1,q̄2 are, re-
spectively, the electric charges of the valence-quark and -antiquark 
in the meson: eK

q1
= es , eπ

q1
= ed , eK ,π

q2 = eū . Using our DB-kernel 
results for ϕK ,π (u) and the one-loop expression for αs(Q 2), with 
ΛQCD = 0.234 GeV and N f = 4 [20], we employ the one-loop 
evolution equations [63,64] to express our amplitudes at ζ 2

E =
17.4 GeV2, and therewith obtain

F K
(
ζ 2

E

)
/Fπ

(
ζ 2

E

) = 1.23. (19)

This prediction follows from the computed values: ωK
q1=s = 1.21, 

ωK
q2=ū = 1.0, ωπ = 1.17, which expose a 17% SU(3)-flavour-

symmetry breaking effect at ζE ; and it agrees with the value 
inferred from experiment to better than 30%, despite the exper-
iment being performed at timelike momenta. The claim [49] of a 
9σ (factor of two) disagreement in this ratio between pQCD and 
experiment is thus revealed to be a misapprehension, arising be-
cause the expected result was based on a mistaken assumption 
that ϕasy should provide estimates relevant to contemporary ex-
periment. This repeats a pattern predicted for the pion form factor 
itself [9], in which parton-model scaling and scaling violations are 
apparent on Q 2 � 8 GeV2 but the normalisation is set by nonper-
turbative DCSB dynamics.

We would like to remark that whilst agreement between ex-
periment and theory for the ratio is satisfactory at sU , a puzzle re-
mains with the normalisation of F K ,π (sU ) [65]. This is highlighted 
by a comparison between the computed value of Fπ (ζ 2

E ) = 0.42/ζ 2
E

[9] and |Fπ (sU )| = 0.84(5)/sU reported in Ref. [60]. The computa-
tion in Ref. [9] agrees with all available, reliable spacelike data, and 
the calculated value of Fπ (ζ 2

E ) is a factor of four larger than the 
result obtained from Eq. (17) using ϕasy. It is nevertheless still a 
factor of two smaller than the stated timelike experimental value.

4. Conclusion

We described the first Dyson–Schwinger equation (DSE) com-
putation of the valence-quark (twist-two parton) distribution am-
plitude for a bound-state constituted from quarks with unequal 
current masses; namely, the kaon. In this case, the PDA is broad, 
concave and skewed; i.e., asymmetric, with the peak located at 
u = 0.56–0.58. These features are a clear and accurate expression 
of SU(3)-flavour-symmetry breaking in hadron physics. They show 
that: the heavier quark in the kaon carries more of the bound-
state’s momentum; and the scale of flavour-symmetry breaking is 
nonperturbative in origin. Indeed, the same can be said for the 
PDA’s u-dependence at any accessible energy scale. Our results 
are consistent with those inferred from numerical simulations of 
lattice-regularised QCD; and this confluence suggests strongly that 
the kaon (and pion) PDA described above should serve as the basis 
for future attempts to access CP violation in the Standard Model.

It is worth reiterating that there are a number of advantages 
in using the DSE approach in studies such as this. For example, 
the framework preserves the one-loop renormalisation group be-
haviour of QCD, so that current-quark masses have a direct con-
nection with the parameters in QCD’s action and the dressed-quark 
mass-functions, Ms,u(p2), are independent of the renormalisation 
point. Likewise, the renormalisation point can be fixed unambigu-
ously, as in lattice-QCD. Moreover, one is not just restricted to 
estimating a few low-order moments of the PDA. In working in the 
continuum and computing Bethe–Salpeter wave functions directly, 
the DSEs enable one to deliver a prediction for the pointwise be-
haviour of the PDA on the full domain u ∈ [0, 1]. Importantly, that 
prediction is parameter-free and unifies the kaon’s PDA with a di-
verse range of apparently distinct phenomena.

A coherent picture is now emerging. Modern DSE studies pre-
dict PDAs for light-quark mesons that are broad concave functions. 
The dilation with respect to the asymptotic PDA is a clean expres-
sion of dynamical chiral symmetry breaking (DCSB) on the light 
front. Notably, where a comparison is possible, the DSE results 
are consistent with those determined via contemporary numeri-
cal simulations of lattice-regularised QCD. A new paradigm thus 
presents itself, from which it follows that at energy scales acces-
sible with existing and foreseeable facilities, one may arrive at re-
liable expectations for the outcome of experiments by using these 
broad, concave PDAs in the leading-order, leading-twist formulae 
for hard exclusive processes. Following this procedure, any discrep-
ancies will be significantly smaller than those produced by using 
the asymptotic PDA in such formulae and the magnitude of the 
disagreement will provide a good estimate of the size of higher-
order, higher-twist effects.
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Appendix A

Here we describe the interpolations used in our evaluation of 
the moments in Eq. (5). There are two sets of results to con-
sider; viz., those obtained in RL truncation and those produced 
by DB truncation. The interaction in Ref. [20] has one parame-
ter m3

g := Dω because with mg = constant, light-quark observ-
ables are independent of the value of ω ∈ [0.4, 0.6] GeV. We use 
ω = 0.5 GeV.
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Table A.1
Representation parameters. Eq. (A1) – the pair (x, y) represents the complex num-
ber x + iy. (Dimensioned quantities in GeV.)

RL z1 m1 zs m2

u (0.38,0.71) (0.71,0.22) (0.14,0) (−0.78,0.75)

s (0.45,0.15) (0.72,0.29) (0.16,0.01) (−1.45,0.74)

DB
u (0.42,0.24) (0.44,0.19) (0.13,0.07) (−0.76,0.60)

s (0.43,0.30) (0.55,0.22) (0.12,0.11) (−0.83,0.42)

In RL truncation, with mg = 0.82 GeV and renormalisation 
point invariant current-quark masses m̂u/d = 6.2 MeV, m̂s =
160 MeV, which correspond to the following one-loop evolved 
masses mζ=2 GeV

u/d = 4.3 MeV, mζ=2 GeV
s = 110 MeV, we obtain mπ =

0.14 GeV, fπ = 0.093 GeV and mK = 0.49 GeV, f K = 0.11 GeV.
Using the DB truncation with mg = 0.55 GeV, we obtain mπ =

0.14 GeV, mK = 0.50 GeV from renormalisation point invariant 
current-quark masses m̂u/d = 4.4 MeV, m̂s = 90 MeV, which yield 
mζ=2 GeV

u/d = 3.0 MeV, mζ=2 GeV
s = 62 MeV and produce the follow-

ing values of the dressed-quark mass Mu(ζ2) = 4.3 MeV, Ms(ζ2) =
89 MeV, which are in fair agreement with modern lattice estimates 
[66].

In interpolating the results from either truncation, the dressed-
quark propagators are represented as [32]

S f (p) =
jm∑

j=1

[ z f
j

iγ · p + m f
j

+ z f ∗
j

iγ · p + m f ∗
j

]
, (A1)

with m j �= 0 ∀ j, so that σV ,S are meromorphic functions with no 
poles on the real p2-axis, a feature consistent with confinement 
[30]. We find that jm = 2 is adequate; and the interpolation pa-
rameters are listed in Table A.1.

The kaon’s Bethe–Salpeter amplitude has the form (� = qηη̄)

ΓK (�; P ) = γ5
[
iE K (�; P ) + γ · P F K (�; P )

+γ · � G K (�; P ) + σμν�μ Pν H K (�; P )
]
. (A2)

As the kaon’s valence-quarks are not degenerate in mass, each 
scalar function in Eq. (A2) has the following decomposition

F(�; P ) = F0(�; P ) + � · PF1(�; P ), (A3)

with F0,1 �= 0 and even under (� · P ) → (−� · P ). The following 
forms are flexible enough to allow a satisfactory representation of 
the numerical solutions to the Bethe–Salpeter equations:

F j(�, P ) =
1∫

−1

dαρ0(α)
(U0 − U1 − U2)Λ

2n0
j

(�2 + α � · P + Λ2
j )

n0

+
1∫

−1

dαρ1(α)
U1Λ

2n1
j

(�2 + α� · P + Λ2
j )

n1

+
1∫

−1

dαρ2(α)
U2Λ

2n2
j

(�2 + α� · P + Λ2
j )

n2
, (A4)

where

ρi(α) = Γ (νi + 3
2 )√

πΓ (νi + 1)

(
1 − α2)νi

. (A5)

Values for the interpolation parameters in Eqs. (A4), (A5) are 
determined via a least-squares fit to the Chebyshev moments
Table A.2
Representation parameters associated with Eqs. (A2)–(A5). (Dimensioned quantities 
in GeV. Omitted quantities are zero or unused.)

RL E0 E1 F0 F1 G0 G1

ν0 −0.71 0.17 1.33 5.62 1.0 −0.1
ν1 −0.7
ν2 1.0 0.0 0.0 0.0 0.0 0.0
U0 1.0 0.7 0.42 0.21 0.0 0.28
U1 0.25
103U2 6.83 0.36 0.90 0.01 −0.01 0.70
n0 5 8 5 8 10 6
n1 12
n2 1 2 1 2 2 2
Λ 1.8 2.0 1.5 1.6 2.1 1.5

DB
ν0 −0.54 −0.1 −0.01 1.6 1.5 3.0
ν1 −0.7 −0.4 −0.7 0.8 3.0
ν2 1.0 0.0 0.0 0.0 0.0 0.0
U0 1.0 0.22 0.56 0.11 −0.058 0.12
U1 −2.0 −0.5 −0.3 −0.65 −1.5
102U2 2.5 0.052 0.39 0.001 0.049 −0.60
n0 4 8 4 10 5 8
n1 5 12 6 12 10
n2 1 2 1 2 2 2
Λ 1.35 1.7 1.2 1.45 0.8 1.1

Fn
1,2

(
�2) = 2

π

1∫
−1

dx
√

1 − x2F1,2
E (�; P )Un(x), (A6)

with n = 0, 2, where Un(x) is an order-n Chebyshev polynomial 
of the second kind, and ix = �̂ · P̂ , with �̂2 = 1 and P̂ 2 = −1. The 
resulting parameter values are listed in Table A.2. N.B. We have not 
included the overall multiplicative factor resulting from canonical 
normalisation of ΓK ; and the function H is omitted because it does 
not have a noticeable effect on our results.
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