2,207 research outputs found

    Reconsideration of the QCD corrections to the ηc\eta_c decays into light hadrons using the principle of maximum conformality

    Full text link
    In the paper, we analyze the ηc\eta_c decays into light hadrons at the next-to-leading order QCD corrections by applying the principle of maximum conformality (PMC). The relativistic correction at the O(αsv2){\cal{O}}(\alpha_s v^2)-order level has been included in the discussion, which gives about 10%10\% contribution to the ratio RR. The PMC, which satisfies the renormalization group invariance, is designed to obtain a scale-fixed and scheme-independent prediction at any fixed order. To avoid the confusion of treating nfn_f-terms, we transform the usual MS\overline{\rm MS} pQCD series into the one under the minimal momentum space subtraction scheme. To compare with the prediction under conventional scale setting, RConv,mMOMr=(4.120.28+0.30)×103R_{\rm{Conv,mMOM}-r}= \left(4.12^{+0.30}_{-0.28}\right)\times10^3, after applying the PMC, we obtain RPMC,mMOMr=(6.090.55+0.62)×103R_{\rm PMC,mMOM-r}=\left(6.09^{+0.62}_{-0.55}\right) \times10^3, where the errors are squared averages of the ones caused by mcm_c and ΛmMOM\Lambda_{\rm mMOM}. The PMC prediction agrees with the recent PDG value within errors, i.e. Rexp=(6.3±0.5)×103R^{\rm exp}=\left(6.3\pm0.5\right)\times10^3. Thus we think the mismatching of the prediction under conventional scale-setting with the data is due to improper choice of scale, which however can be solved by using the PMC.Comment: 5 pages, 2 figure

    Understanding the internet topology evolution dynamics

    Get PDF
    The internet structure is extremely complex. The Positive-Feedback Preference (PFP) model is a recently introduced internet topology generator. The model uses two generic algorithms to replicate the evolution dynamics observed on the internet historic data. The phenomenological model was originally designed to match only two topology properties of the internet, i.e. the rich-club connectivity and the exact form of degree distribution. Whereas numerical evaluation has shown that the PFP model accurately reproduces a large set of other nontrivial characteristics as well. This paper aims to investigate why and how this generative model captures so many diverse properties of the internet. Based on comprehensive simulation results, the paper presents a detailed analysis on the exact origin of each of the topology properties produced by the model. This work reveals how network evolution mechanisms control the obtained topology properties and it also provides insights on correlations between various structural characteristics of complex networks.Comment: 15 figure

    Bis(4-acetyl-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2 O,O′)bis­(N,N-dimethyl­formamide-κO)nickel(II)

    Get PDF
    The title complex, [Ni(C12H11N2O2)2(C3H7NO)2], lies on on an inversion center. The NiII ion is coordinated in a slightly distorted octa­hedral coordination enviroment by four O atoms from two bis-chelating 4-acety-3-methyl-1-phenyl-1H-pyrazol-5-olate ligands in the equatorial plane and two O atoms from two N,N-dimethyl­formamide ligands in the axial sites. In the crystal structure, weak inter­molecular π–π stacking inter­actions with centroid–centroid distances of 3.7467 (13) Å link mol­ecules into chains extending alongthe b axis

    Structural and colored disruption as camouflage strategies in two sympatric Asian box turtle species (<i>Cuora</i> spp.)

    Get PDF
    Disruptive coloration is a common camouflage strategy that breaks body outlines and ostensibly blends into complex backgrounds. However, the contrasting false edge caused by the animal's structure can also break the outline, and there is no empirical evidence to support this strategy. Here, we examined the Gabor edge disruption ratio (GabRat) of two species with divergent carapaces, the keeled box turtle (Cuora mouhotii) and the Indochinese box turtle (C. galbinifrons), on preferred (e.g., deciduous leaves) and non-preferred (i.e., grass) substrates. We quantified edge disruption in different substrates to compare between-species differences in the GabRat of disruptive coloration among the turtles’ preferred and non-preferred (control) substrates. We found that both species exhibited higher GabRat on preferred substrates, but interestingly, the keeled box turtle, with a uniformly colored carapace containing flat scutes and two keels, had a higher GabRat than the Indochinese box turtle, characterized by two yellow stripes on its carapace. Our results indicated that the strong brightness gradients caused by the directional illumination of the flatted and keeled carapace creates disruptive coloration in the keeled box turtle, whereas a high chroma contrast creates disruptive coloration in the Indochinese box turtle. For these turtles, the structural modifications result in variations in brightness that lead to higher levels of disruption than the chromatic disruption of the Indochinese box turtle. Our study provides, to our knowledge, the first evidence of disruptive camouflage in turtles and the first comprehensive test of structural and colored disruption in vertebrates

    Partial masquerading and background matching in two Asian box turtle species (<i>Cuora</i> spp.)

    Get PDF
    Animals living in heterogeneous natural environments adopt different camouflage strategies against different backgrounds, and behavioral adaptation is crucial for their survival. However, studies of camouflage strategies have not always quantified the effect of multiple strategies used together. In the present study, we used a human visual model to quantify similarities in color and shape between the carapace patterns of two Cuora species and their preferred habitats. Our results showed that the color of the middle stripe on the carapace of Cuora galbinifrons (Indochinese box turtle) was significantly similar to the color of their preferred substrates. Meanwhile, the middle stripe on the carapace of C. mouhotii (keeled box turtle) contrasted more with their preferred substrates, and the side stripe matched most closely with the environment. Furthermore, the carapace side stripe of C. galbinifrons and the carapace middle stripe of C. mouhotii highly contrasted with their preferred substrates. We quantified the similarity in shape between the high-contrast stripes of both Cuora species and leaves from their habitats. The carapace middle stripe of C. mouhotii was most similar in shape to leaves from the broad-leaves substrate, and the carapace side stripe of C. galbinifrons was the most similar in shape to leaves from the bamboo-leaves substrate. We determined that these species adopt partial masquerading when their entire carapace is exposed and partially match their background when they semi-cover themselves in leaf litter. To the best of our knowledge, this is the first study to demonstrate that partial masquerading and background matching improve the camouflage effect of Asian box turtles in their preferred habitats. This is a novel study focusing on the influence of the shape and color of individual carapace segments on reducing detectability and recognition.</p
    corecore