529 research outputs found

    Comparative studies of computation tools for moving force

    Get PDF
    Existing techniques to identify moving forces based on traditional finite element method (TFEM) is subject to a large number of elements with detailed description of a structure, which makes modeling complicated. A new modeling method for a vehicle-bridge system called wavelet finite element method (WFEM) is presented in this paper. It makes use of a multi-scale analysis whereby detailed description can be achieved to overcome this problem. The shape function of WFEM is formed by a scale function in a wavelet space and by a transformation matrix to connect the wavelet space to the physical one. To evaluate the properties of WFEM, simulations of two moving forces on a simply supported and a continuous bridge are conducted with subsequent comparison with TFEM. To smooth the noise and large fluctuations on the boundaries of the identified results in the time history, the first-order Tikhonov regularizations combined with the dynamic programming technique are adapted and compared with the zeroth-order Tikhonov regularization. White noise is added to the simulated dynamic responses. Some parameter effects, such as vehicle bridge parameters, measurement parameters are also considered. Numerical results demonstrate the WFEM method and the first-order Tikhonov regularization method to be effective for moving force identification. The first-order Tikhonov regularization has the property of smoothing noise and avoiding large fluctuations on the boundaries. Meanwhile, the parameters analyzed affect the identified results to some extent

    A Novice Method for Calibrating the Transient Model of an Automotive HVAC System

    Get PDF
    A novice method for calibrating the transient model of an automotive HVAC system is presented in this paper. Transient models can be of great importance in the development process of automotive HVAC control algorithms, especially model based ones, as it saves both time and effort. However, the calibration process is usually difficult and relies heavily on experience due to the complexity of the model. A set of customized measurement tools, which consists of several wireless temperature and humidity sensors and an OBD dongle, is used to capture time series data related to the HVAC system during normal driving. Parts of the time series data are then fed into an optimization algorithm to generate a cost function, which can be minimized when the measured data correspond to the simulation data generated by the transient model, while other parts of the data are remained for the validation step. A sensitivity analysis is then performed to find out which parameters in the HVAC transient model need to be optimized to calibrate the model. As the transient model is a physical network model which can be generally considered as a set of differential and algebraic equations, this presented method reduces the calibration process of a complex physical model into solving a common optimization problem. Therefore, various optimization algorithms and tools can be applied. The method is developed and tested during the modeling process of an automotive HVAC system. The efficiency of the modelling process is improved while the calibration results fit better with the measured data.

    Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics

    Full text link
    Recently developed physics-informed neural network (PINN) has achieved success in many science and engineering disciplines by encoding physics laws into the loss functions of the neural network, such that the network not only conforms to the measurements, initial and boundary conditions but also satisfies the governing equations. This work first investigates the performance of PINN in solving stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). The results elucidate the challenges of utilizing PINN in stiff ODE systems. Consequently, we employ Quasi-Steady-State-Assumptions (QSSA) to reduce the stiffness of the ODE systems, and the PINN then can be successfully applied to the converted non/mild-stiff systems. Therefore, the results suggest that stiffness could be the major reason for the failure of the regular PINN in the studied stiff chemical kinetic systems. The developed Stiff-PINN approach that utilizes QSSA to enable PINN to solve stiff chemical kinetics shall open the possibility of applying PINN to various reaction-diffusion systems involving stiff dynamics

    Research on the Operating Characteristics of Floor Heating System with Residential EVI Air Source Heat Pump in China

    Get PDF
    Air source heat pump is considered a commendatory way to help solve the environmental problems resulting from coal-fired heating, especially in the cold region of China. The heat pump uses air as low-grade heat source, so the atmospherical temperature plays a key role in the operating performance of units. And the technology of economized vapor injection (EVI) is used to improve the performance in the low temperature condition. Beijing is one of the most typical cities in China cold region. Therefore, this paper took a residence in Beijing as the test site. A long-term and high-frequency monitoring was performed to investigate the operating characteristics and heating effect of floor heating system with EVI air source heat pump, and the economy was also analyzed. Equivalent carbon dioxide emission was also calculated to evaluate the carbon dioxide emission of such a heating system from cradle to grave. The results showed that the heating seasonal performance factor (HSPF) of the heating system in Beijing was 3.28, and the running condition was stable on the premise of satisfying the heating need of uses. Attentions were also paid to the behavior of residents. The irregularity revealed the apparent need and the energy saving awareness, which directly affected the power consumption

    Adaptive fault-tolerant attitude tracking control for hypersonic vehicle with unknown inertial matrix and states constraints

    Get PDF
    This paper proposes an adaptive fault-tolerant control (FTC) method for hypersonic vehicle (HSV) with unexpected centroid shift, actuator fault, time-varying full state constraints, and input saturation. The occurrence of unexpected centroid shift has three main effects on the HSV system, which are system uncertainties, eccentric moments, and variation of input matrix. In order to ensure the time-varying state constraints, a novel attitude state constraint control strategy, to keep the safe flight of HSV, is technically proposed by a time-varying state constraint function (TVSCF). A unified controller is designed to handle the time-varying state constraints according to the proposed TVSCF. Then, the constrained HSV system can be transformed into a novel free-constrained system based on the TVSCF. For the variation of system input matrix, input saturation and actuator fault, a special Nussbaum-type function is designed to compensate for those time-varying nonlinear terms. Additionally, the auxiliary systems is designed to compensate the constraint of system control inputs. Then, it is proved that the proposed control scheme can guarantee the boundedness of all closed-loop signals based on the Lyapunov stability theory. At last, the simulation results are provided to demonstrate the effectiveness of the proposed fault-tolerant control scheme.</p

    Influences of wind and rotating speed on the fluid-structure interaction vibration for the offshore wind turbine blade

    Get PDF
    For the 5MW offshore wind turbine blade, the control and discrete equations of the fluid domain and structural domain were established respectively, and the calculation formulas of blade loads and damping coefficient were given. Furthermore, the blade entity modeling was completed by using UG and ANSYS Workbench. Based on it, the numerical calculation of blade vibration characteristics under different wind and rotating speeds was carried out, and the reliability verification was conducted by the wind tunnel test. The results of calculation indicate that the numerical results of the first principal stresses at the blade surface along the span-wise direction are consistent with the results of wind tunnel test, which verifies the reliability of the theory and numerical models. Both the influences of the bidirectional fluid-structure interaction (BFSI) and the rotation effect on the characteristics of blade vibration should be underlined. The increase of wind or rotating speed results in the nonlinear increase of the maximum span-wise displacement of the blade and of the Mises-stresses. Under different wind or rotating speed, the blade’s maximum displacement occurs at its tip, its maximum Mises-stresses appear at the relative wingspan of 0.55, and the contribution of rotating speed and average wind speed to the displacement or Mises-stress along the span-wise direction is similar

    Application and Mechanism of High-Sensitivity Indicator Film for Monitoring Fish Freshness

    Get PDF
    The sensitivity of freshness indicator labels/films has become an important research direction of intelligent food packaging. In this study, a high-sensitivity indicator film containing gelatin and Fe2+ was prepared by electrospinning using blueberry anthocyanins as the indicator and zein as the matrix for monitoring fish freshness. The validity and sensitivity of the indicator film for detecting the freshness of silver carp were tested and the potential mechanism was elucidated. The results of pH sensitivity, ammonia sensitivity and anthocyanin release showed that the addition of gelatin and Fe2+ improved the sensitivity of the indicator film to pH and ammonia, and contributed to better binding of the anthocyanins in the film. There was a strong correlation between the color response (P = (L* + a* + b* + R + G + B)/a*) of the film and the content of total volatile basic nitrogen (TVB-N) content in fish meat as a freshness indicator (R2 > 0.98). In conclusion, the prepared indicator film can effectively monitor fish freshness, and the hydrogen bond interactions between anthocyanins and gelatin/Fe2+ may affect the color response characteristics and sensitivity of the indicator film
    • …
    corecore