114 research outputs found

    Reform and Innovation of Higher Ethics Education in the Background of Globalization

    Get PDF
    Along with globalization, drastic collisions and conflicts happen between Chinese and western culture, which faces the higher ethics education new challenge and provide the reform and innovation of higher ethics education new opportunities of development. The aim at identifying the cultural background of higher ethics education, that is globalization, and explore the problems in the development of higher ethics education in new era, is to make a plan of cultural philosophy for modern development of higher ethics education and finalize the focus on reform and innovation of higher ethics education

    Living with air-conditioning: experiences in Dubai, Chongqing and London

    Get PDF
    Extreme heat is a likely consequence of global warming, leading to increased mortality and reduced wellbeing. There is limited research evidence of experiences of living with and without air-conditioning (AC), commonly regarded as the sole technological solution, but such knowledge is essential to progressing alternative approaches. A total of 72 participants were interviewed in an exploratory cross-cultural phenomenological study in Dubai (United Arab Emirates—UAE), Chongqing (China) and London (UK). In Dubai and Chongqing, AC was ubiquitous and central to life in the hotter months, although not for all socio-economic groups. AC enabled indoor work to proceed, but a restricted indoor life meant less exercise, less social interaction and health issues. Participants had over-adapted, not to heat but to cold indoor temperatures, which were uncomfortable for many. In London, AC was not yet used, but the purchase of AC was being contemplated. The London participants showed a range of behavioural adaptations to heat. To reduce dependence on AC, regulations and behaviour change interventions regarding AC settings should focus on acclimatisation to heat. Changes in societal patterns, such as workhours, and behavioural adaptations, such as informed use of shading, can help mitigate heat. Deconstruction of the meanings of AC-related thermal comfort is needed to incorporate physiological, behavioural and social responses

    Bespoke cell therapy manufacturing platforms - a contradiction in terms?

    Get PDF
    Advanced biological therapies, such as cell and viral therapeutics, will have a transformative effect on healthcare. In many cases these therapies are curative rather than palliative and aim to treat a wide range of diseases including malignancies, cardiovascular, immune, and metabolic disorders. As cell therapies begin to enter commercialization stages, some of the bigger challenges that need to be addressed include bottlenecks in production and high cost of goods. At the same time, switching to manufacturing platforms that might allow scale-up (allogeneic) and scale-out (autologous) to allow commercialization at an acceptable cost of goods could result in changes to the cell product critical quality attributes. For the field to move forward, it is imperative to enable the use of production platforms that allow commercialization, yielding high quality and quantity of cells at acceptable costs. Yet, as opposed to the highly commercialized mammalian cell protein manufacturing, in which the same cell types and processes are used to produce many different proteins, the diversity of cell types and processes in cell therapy may require significantly different manufacturing methods. Does this mean that a multitude of different manufacturing platforms is needed and feasible for cell therapy manufacturing? Or is the development of a one-size-fits-all platform a superior and possible approach? How would an optimal bespoke platform approach look like, and would it work for different modalities (allogeneic vs. autologous), and a diversity of cell types and processes? These questions will be addressed and possible considerations and solutions presented

    Manufacturing of patient specific novel T cell therapies using the Cocoon® Platform automated system

    Get PDF
    Engineered T cell therapies, particularly chimeric antigen receptor T cell (CAR-T) immunotherapies, have proved effective against hematologic cancers. However, CAR-T therapies can potentiate immune responses causing cytokine release syndrome (CRS; “cytokine storm”) leading to adverse events in patients. Additionally, CAR-T has shown sporadic success in solid tumor indications. Novel therapies which activate T cells via the native T cell receptors (TCR) have shown greater tumor antigen recognition providing an alternative therapy which may prove effective against solid tumors. Utilizing novel cell immunotherapy modalities is only part of the solution as challenges remain to scale manufacturing to meet commercial demand. Scaling out commercial patient-specific cell therapy manufacturing for large populations using current methods will be expensive (cleanrooms and FTEs) and complex (logistics). Innovative manufacturing solutions will be required to manufacture patient-specific therapies in a robust and cost-effective manner. The Cocoon® Platform is one such innovation, a functionally-closed, automated, scalable cell therapy manufacturing platform. This abstract highlights a therapeutic T cell process translated from an open, manual process to the Cocoon® Platform. During process translation, the functionally-closed Cocoon® Platform was used to automate cell seeding, activation, transduction, feeding, real-time process monitoring, washing, and final product harvest using the single-use Cocoon cassette. During process development and translation, important process parameters were identified, optimized, and programmed enabling multiple process step automation removing the need for manual intervention. For the process, 200 million CD4+ and CD8+ isolated T cells were inoculated with TransActTM activator. The following day, cells were transduced with HER-2 lentivirus vector at various multiplicities of infection (MOI). Cells were expanded with a predefined feeding strategy in media supplemented with IL-2 until final product harvest. Following harvest, cells were assessed for cell yield, viability, transduction efficiency, and VCN. T cell phenotype and functionality was assessed via flow cytometry. The Cocoon manufacturing processes yielded 2.7 x 109 viable cells on average with viability \u3e85%. The Cocoon processes supported both CD4+ and CD8+ T cell expansion with 68% CD4+ T cells and 31% CD8+ T cells on average. The final product exhibited high T cell purity and viability (i.e. \u3e90% abTCR+ and 89% abTCR+, respectively) with transduction efficiencies varied from ~30% to \u3e65% depending on the process MOI. Vector copy number (VCN) was evaluated after each process and found to be ≤5 copies/transduced T cell. In summary, a gene-modified T cell process was successfully translated to the Cocoon and the harvested final products met all pre-defined acceptable criteria. The Cocoon represents a tool for manufacturing cell therapies in a robust manner, while maintaining comparability, and lowering manufacturing costs via increased automation. Ultimately the Cocoon will enable and accelerate development of cell therapies to address solid tumor indications and meet a critical patient need

    Divergence of stable isotopes in tap water across China

    Get PDF
    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale

    An automated and closed system for patient specific CAR-T cell therapies

    Get PDF
    Autologous cell therapies, particularly chimeric antigen receptor T-cell (CAR-T) immunotherapies, are becoming a promising treatment option for difficult diseases. Immunotherapies for blood cancers have dominated the pipeline, while treatments for solid tumors have started to become more successful. However, as the market continues to grow and more clinical trials begin globally, the challenge of manufacturing autologous cell therapies remains significant. A greater number of patients will lead to an increase in cost, labor, and the complexity of logistics for scaling out the commercial production of patient specific therapies. To enable clinical and commercial success, novel manufacturing platforms, such as closed and automated systems, will be required to produce cost effective and robust therapies. This abstract highlights a successful CAR-T process translation from a manual process to an automated patient scale system. To accomplish a CAR-T process translation, we utilized a platform that automates cell seeding, activation, transduction, real time process monitoring, feeding, washing and concentration, and harvesting. In order to mimic a therapeutic CAR-T cell process, manual research scale processes were optimized, scaled up, and then programmed to run automatically without manual intervention. In these processes, 100 million peripheral blood mononuclear cells (PBMC) were first inoculated with CD3/CD28 activation beads. The following day, cells were transduced with HER-2 lentivirus vector. Cells were then expanded with a defined feeding strategy and IL-2 supplements until harvested when target yields were reached. After harvest, cells were analyzed for cell yield, viability, transduction efficiency, and an array of cell phenotype, potency and functionality via FACS and killing assays. Specifically, CAR-T cells were analyzed for the presence of naïve T cells, T stem cell memory, T central memory, T effector memory, and T effector cells. We show here how we optimized, scaled up, and automated manual processes to reach clinical requirements. Automated runs using the above process with cells transduced by HER-2 virus yielded an average of 2 x 109 cells post harvest with a viability \u3e 90%. Automated runs and associated controls were able to support the expansion of both CD4+ and CD8+ T cells with 73% CD4+ T cells and 20% CD8+ T cells. Harvested cells yielded approximately 80% NGFR+ cells with a higher detection of NGFR in the CD4+ fraction than in the CD8+ fraction for all samples. Both CD4+ and CD8+ subsets demonstrated T cell phenotype such as naïve T cells, T stem cell memory, T central memory, T effector memory, and T effector cells. Both subsets also only expressed between 15-20% of immunosuppressive regulatory T cells. Cell health was evaluated by the levels of exhaustion marker, PD-1, which was 19% in CD4+ T cells and \u3c 1% in CD8+ T cells. Furthermore, there was a negligible amount of senescent T cells and anergic cells and \u3c 10% expression of the apoptotic marker, Caspase-3. Subsequently, cells from multiple automated runs showed the specific killing of NGFR+ tumor line were correlated with high levels of effector cytokines: TNF-alpha (~34%) and IFN-gamma (20-25%) as compared to a manual control. In summary, automated CAR-T process in the Cocoon system yields a healthy populations of T cell subsets. This system is a viable solution to translate labor-intensive CAR-T process into a fully automated system, thus allowing scalability, high yield, reduction of manufacturing cost, and better process control to yield high quality CAR-T cells

    Erk1 Positively Regulates Osteoclast Differentiation and Bone Resorptive Activity

    Get PDF
    The extracellular signal-regulated kinases (ERK1 and 2) are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1−/− bone marrow mononuclear cells (BMMNCs) demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2−/− BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function

    Evaluation of PCR on Bronchoalveolar Lavage Fluid for Diagnosis of Invasive Aspergillosis: A Bivariate Metaanalysis and Systematic Review

    Get PDF
    BACKGROUND: Nucleic acid detection by polymerase chain reaction (PCR) is emerging as a sensitive and rapid diagnostic tool. PCR assays on serum have the potential to be a practical diagnostic tool. However, PCR on bronchoalveolar lavage fluid (BALF) has not been well established. We performed a systematic review of published studies to evaluate the diagnostic accuracy of PCR assays on BALF for invasive aspergillosis (IA). METHODS: Relevant published studies were shortlisted to evaluate the quality of their methodologies. A bivariate regression approach was used to calculate pooled values of the method sensitivity, specificity, and positive and negative likelihood ratios. Hierarchical summary receiver operating characteristic curves were used to summarize overall performance. We calculated the post-test probability to evaluate clinical usefulness. Potential heterogeneity among studies was explored by subgroup analyses. RESULTS: Seventeen studies comprising 1191 at-risk patients were selected. The summary estimates of the BALF-PCR assay for proven and probable IA were as follows: sensitivity, 0.91 (95% confidence interval (CI), 0.79-0.96); specificity, 0.92 (95% CI, 0.87-0.96); positive likelihood ratio, 11.90 (95% CI, 6.80-20.80); and negative likelihood ratio, 0.10 (95% CI, 0.04-0.24). Subgroup analyses showed that the performance of the PCR assay was influenced by PCR assay methodology, primer design and the methods of cell wall disruption and DNA extraction. CONCLUSIONS: PCR assay on BALF is highly accurate for diagnosing IA in immunocompromised patients and is likely to be a useful diagnostic tool. However, further efforts towards devising a standard protocol are needed to enable formal validation of BALF-PCR

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore