270 research outputs found

    Nonlinearity in Large Amplitude Oscillatory Shear (Laos) of Different Viscoelastic Materials

    Get PDF
    The present work investigates nonlinear behavior in large amplitude oscillatory shear (LAOS) of four different polymeric materials using simultaneous conventional rheometric measurements and particle-tracking velocimetric observations. In contrast to most studies in the literature that treat nonlinearity in LAOS in steady state, we emphasize by the present four examples that nonlinearity in LAOS often arise in complex fluids due to time-dependent rearrangement of their microstructures in response to LAOS. Consequently, no correlation is obvious between strain dependence of the steady-state stress response and the time-dependent characteristics of the steady-state response. For instance, a highly viscoelastic material made of nano-sized polybutadiene particles exhibits homogeneous deformation and an approximate sinusoidal wave despite strong strain softening. In a second example, a well-entangled polybutadiene solution becomes inhomogeneous over time, and the corresponding nonlinearity (i.e., strain softening) took a finite time to develop to its fullest. In the example of wall slip of a monodisperse entangled polyisoprene melt, contrary to the literature claim that even harmonics would emerge, we show that the stress response only involves odd harmonics in the absence of any edge fracture. Last, a polydisperse poly(dimethyl siloxane) melt experiences homogeneous LAOS without displaying significant higher harmonics in the absence of any edge failure. In contrast, the Fourier transform analysis shows that meniscus failure is responsible for the emergence of higher harmonics including some even ones. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3193713

    Universal Scaling Behavior in Startup Shear of Entangled Linear Polymer Melts

    Get PDF
    We have studied stress overshoot behavior in startup shear of four monodisperse polymer melts with a range of chain entanglement from Z = 24 to 160 entanglement points per chain. In the elastic deformation regime defined by (gamma)over dot tau(R) \u3e 1 where tau(R) is the Rouse relaxation time, (i) the peak shear stress sigma(max) scales with the time t(max) at the peak to -1/2 power, in contrast to an exponent of -1/4 in the viscoelastic regime (for (gamma)over dot tau(R) \u3c 1), (ii) sigma(max) changes linearly with the elapsed strain at the stress peak gamma(max), which scales with the applied shear rate as (gamma)over dot(1/3), (iii) a supermaster curve collapses time-dependent shear stress growth curves up to the stress maximum at all shear rates for all the four styrene-butadiene rubber samples. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3086872

    Combination resonance analysis of a multi-DOF controllable close-chain linkage mechanism system

    Get PDF
    The two-DOF controllable close-chain linkage mechanism system is investigated in this paper. Based on the air-gap field of the non-uniform airspace of motors caused by the eccentricity of rotor, the electromechanical coupling relation in the real running state of motors is analyzed. The electromechanical coupling dynamic model of the system is established by means of the finite element method. The dynamic equation constitutes the basis on which the combination resonance characteristics of the system caused by electromagnetic parameter excitations of the two motors are analyzed by the multiple scales method. The first-order stationary solution is obtained under that condition, and the stability conditions of the stationary solution are also given. Finally, an experiment is presented. Results indicate that it is feasible and beneficial to explain some unexpected strong vibration phenomena in the high-speed operation of such multi-DOF controllable close-chain linkage mechanism using nonlinear combination resonance theories

    Elastic Breakup in Uniaxial Extension of Entangled Polymer Melts

    Get PDF
    Five entangled melts, with the number of entanglements per chain ranging from 25 to 160, have been studied to illustrate how cohesive strength can be overcome in either continuous or interrupted extension (i.e., during or after uniaxial stretching). The internal elastic stress due to chain deformation from imposed strain appears to be the cause of the observed yielding behavior that reveals scaling laws. The visual signature of the elastic breakup is the occurrence of nonuniform extension. The yield phenomena may be understood at a force level

    Prospects of CKM elements ∣Vcs∣|V_{cs}| and decay constant fDs+f_{D_{s}^+} in Ds+→μ+νμD_s^+\to\mu^+\nu_\mu decay at STCF

    Full text link
    We report a feasibility study of pure leptonic decay Ds+→μ+νμD_s^+\to\mu^+\nu_\mu by using a fast simulation software package at STCF. With an expected luminosity of 1 ab−11~\mathrm{ab}^{-1} collected at STCF at a center-of-mass energy of 4.009 GeV, the statistical sensitivity of the branching fraction is determined to be 0.3\%. Combining this result with the c→sc\rightarrow s quark mixing matrix element ∣Vcs∣|V_{cs}| determined from the current global Standard Model fit, the statistical sensitivity of Ds+D_s^+ decay constant, fDs+f_{D_s^+}, is estimated to be 0.2\%. Alternatively, combining the current results of fDs+f_{D_s^+} calculated by lattice QCD, the statistical sensitivity of ∣Vcs∣|V_{cs}| is determined to be 0.2\%, which helps probe possible new physics beyond. The unprecedented precision to be achieved at STCF will provide a precise calibration of QCD and rigorous test of Standard Model.Comment: 8pages, 7 figure

    High-performance cVEP-BCI under minimal calibration

    Full text link
    The ultimate goal of brain-computer interfaces (BCIs) based on visual modulation paradigms is to achieve high-speed performance without the burden of extensive calibration. Code-modulated visual evoked potential-based BCIs (cVEP-BCIs) modulated by broadband white noise (WN) offer various advantages, including increased communication speed, expanded encoding target capabilities, and enhanced coding flexibility. However, the complexity of the spatial-temporal patterns under broadband stimuli necessitates extensive calibration for effective target identification in cVEP-BCIs. Consequently, the information transfer rate (ITR) of cVEP-BCI under limited calibration usually stays around 100 bits per minute (bpm), significantly lagging behind state-of-the-art steady-state visual evoked potential-based BCIs (SSVEP-BCIs), which achieve rates above 200 bpm. To enhance the performance of cVEP-BCIs with minimal calibration, we devised an efficient calibration stage involving a brief single-target flickering, lasting less than a minute, to extract generalizable spatial-temporal patterns. Leveraging the calibration data, we developed two complementary methods to construct cVEP temporal patterns: the linear modeling method based on the stimulus sequence and the transfer learning techniques using cross-subject data. As a result, we achieved the highest ITR of 250 bpm under a minute of calibration, which has been shown to be comparable to the state-of-the-art SSVEP paradigms. In summary, our work significantly improved the cVEP performance under few-shot learning, which is expected to expand the practicality and usability of cVEP-BCIs.Comment: 35 pages, 5 figure

    Combination resonance analysis of a multi-DOF controllable close-chain linkage mechanism system

    Get PDF
    The two-DOF controllable close-chain linkage mechanism system is investigated in this paper. Based on the air-gap field of the non-uniform airspace of motors caused by the eccentricity of rotor, the electromechanical coupling relation in the real running state of motors is analyzed. The electromechanical coupling dynamic model of the system is established by means of the finite element method. The dynamic equation constitutes the basis on which the combination resonance characteristics of the system caused by electromagnetic parameter excitations of the two motors are analyzed by the multiple scales method. The first-order stationary solution is obtained under that condition, and the stability conditions of the stationary solution are also given. Finally, an experiment is presented. Results indicate that it is feasible and beneficial to explain some unexpected strong vibration phenomena in the high-speed operation of such multi-DOF controllable close-chain linkage mechanism using nonlinear combination resonance theories

    Escherichia coli O26 in feedlot cattle: Fecal prevalence, isolation, characterization, and effects of an E. coli O157 vaccine and a direct-fed microbial

    Get PDF
    Escherichia coli O26 is second only to O157 in causing foodborne, Shiga toxin–producing E. coli (STEC) infections. Our objectives were to determine fecal prevalence and characteristics of E. coli O26 in commercial feedlot cattle (17,148) that were enrolled in a study to evaluate an E. coli O157:H7 siderophore receptor and porin (SRP®) vaccine (VAC) and a direct-fed microbial (DFM; 106 colony-forming units [CFU]/animal/day of Lactobacillus acidophilus and 109 CFU/animal/day of Propionibacterium freudenreichii). Cattle were randomly allocated to 40 pens within 10 complete blocks; pens were randomly assigned to control, VAC, DFM, or VAC+DFM treatments. Vaccine was administered on days 0 and 21, and DFM was fed throughout the study. Pen-floor fecal samples (30/pen) were collected weekly for the last 4 study weeks. Samples were enriched in E. coli broth and subjected to a multiplex polymerase chain reaction (PCR) designed to detect O26-specific wzx gene and four major virulence genes (stx1, stx2, eae, and ehxA) and to a culture-based procedure that involved immunomagnetic separation and plating on MacConkey agar. Ten presumptive E. coli colonies were randomly picked, pooled, and tested by the multiplex PCR. Pooled colonies positive for O26 serogroup were streaked on sorbose MacConkey agar, and 10 randomly picked colonies per sample were tested individually by the multiplex PCR. The overall prevalence of E. coli O26 was higher (p<0.001) by the culture-based method compared to the PCR assay (22.7 versus 10.5%). The interventions (VAC and or DFM) had no impact on fecal shedding of O26. Serogroup O26 was recovered in pure culture from 23.9% (260 of 1089) of O26 PCR-positive pooled colonies. Only 7 of the 260 isolates were positive for the stx gene and 90.1% of the isolates possessed an eaeβ gene that codes for intimin subtype β, but not the bfpA gene, which codes for bundle-forming pilus. Therefore, the majority of the O26 recovered from feedlot cattle feces was atypical enteropathogenic E. coli, and not STEC
    • …
    corecore