38 research outputs found

    Full Scale of Pore-Throat Size Distribution and Its Control on Petrophysical Properties of the Shanxi Formation Tight Sandstone Reservoir in the North Ordos Basin, China.

    Full text link
    Pore-throat size distribution is a key factor controlling the storage capacity and percolation potential of the tight sandstone reservoirs. However, the complexity and strong heterogeneity make it difficult to investigate the pore structure of tight sandstone reservoirs by using conventional methods. In this study, integrated methods of casting thin section, scanning electron microscopy, high-pressure mercury intrusion (HPMI), and constant-pressure mercury intrusion (CPMI) were conducted to study the pore-throat size distribution and its effect on petrophysical properties of the Shanxi Formation tight sandstones in the northern Ordos Basin (China). Results show that pore types of the Shanxi tight sandstone reservoirs include intergranular pores, dissolution pores, intercrystalline micropores, and microfracture, while the throats are dominated by sheet-like and tube-shaped throats. The HPMI-derived pore-throat size ranges from 0.006 to 10 μm, and the pore-throats with a radius larger than 10 μm were less frequent. The pore body size obtained from CPMI shows similar characteristics with radii ranging from 100 to 525 μm, while the throat size varies greatly with radii ranging from 0.5 to 11.5 µm, resulting in a wide range of pore-throat radius ratio. The full range of pore size distribution curves obtained from the combination of HPMI and CPMI displays multimodal with radii ranging from 0.006 to 525 µm. Permeability of the tight sandstone reservoirs is primarily controlled by relatively larger pore throats with small proportions, and the permeability decreases as the proportions of smaller pore-throats increase. The pervading nanopores in the tight gas sandstone reservoirs contribute little to the permeability but play an important role in the reservoir storage capacity. A new empirical equation obtained by multiple regression indicates that r15 (pore-throat size corresponding to 15% mercury saturation) is the best permeability estimator for tight gas sandstone reservoirs, which yields the highest correlation coefficient of 0.9629 with permeability and porosity

    Full Scale of Pore-Throat Size Distribution and Its Control on Petrophysical Properties of the Shanxi Formation Tight Sandstone Reservoir in the North Ordos Basin, China

    Get PDF
    Pore-throat size distribution is a key factor controlling the storage capacity and percolation potential of the tight sandstone reservoirs. However, the complexity and strong heterogeneity make it difficult to investigate the pore structure of tight sandstone reservoirs by using conventional methods. In this study, integrated methods of casting thin section, scanning electron microscopy, high-pressure mercury intrusion (HPMI), and constant-pressure mercury intrusion (CPMI) were conducted to study the pore-throat size distribution and its effect on petrophysical properties of the Shanxi Formation tight sandstones in the northern Ordos Basin (China). Results show that pore types of the Shanxi tight sandstone reservoirs include intergranular pores, dissolution pores, intercrystalline micropores, and microfracture, while the throats are dominated by sheet-like and tube-shaped throats. The HPMI-derived pore-throat size ranges from 0.006 to 10 μm, and the pore-throats with a radius larger than 10 μm were less frequent. The pore body size obtained from CPMI shows similar characteristics with radii ranging from 100 to 525 μm, while the throat size varies greatly with radii ranging from 0.5 to 11.5 µm, resulting in a wide range of pore-throat radius ratio. The full range of pore size distribution curves obtained from the combination of HPMI and CPMI displays multimodal with radii ranging from 0.006 to 525 µm. Permeability of the tight sandstone reservoirs is primarily controlled by relatively larger pore throats with small proportions, and the permeability decreases as the proportions of smaller pore-throats increase. The pervading nanopores in the tight gas sandstone reservoirs contribute little to the permeability but play an important role in the reservoir storage capacity. A new empirical equation obtained by multiple regression indicates that r 15 (pore-throat size corresponding to 15% mercury saturation) is the best permeability estimator for tight gas sandstone reservoirs, which yields the highest correlation coefficient of 0.9629 with permeability and porosity

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features

    Pore structure fractal characteristics and its relationship with reservoir properties of the first Member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin

    No full text
    Based on physical property, casting thin section, scanning electron microscope, high-pressure mercury injection and other test analysis data, the fractal dimension of pore structure of tight sandstone reservoir was calculated by the method of mercury saturation and water saturation in the first Member of Lower Shihezi Formation in Hangjinqi area, and the relationship between fractal dimension and the physical properties of reservoir was analyzed.The results have shown that the average porosity and permeability of the Lower Shihezi Formation reservoir were 9.83% and 1.03×10-3 μm2, respectively.The reservoir space is mainly composed of intergranular dissolved pores, intragronular dissolved pores and residual intergranular pores.The overall fractal dimension calculated by the mercury saturation method is distributed in 2.138 4-2.829 2 with an average value of 2.396 5 while calculated by the water saturation method is distributed in 2.529 4-2.879 7 with an average value of 2.679 1.Compared with the water saturation method, the fractal dimension calculated by the mercury saturation method has a better correlation with the porosity, permeability and pore structure parameters, because the water saturation method tends to produce deviation on samples with smaller pore throat.The pore structure was divided into four types based on fractal dimension: Type Ⅰ(Df≤2.31), Type Ⅱ(2.31 < Df < 2.4), Type Ⅲ(2.4≤Df < 2.52), Ⅳ(Df≥2.52).Fractal dimension(Df), averoged radius of pore throct(Rm) and porosity(φ) were selected to calculate permeability by multiple nonlinear regression.The calculated permeability by multiple nonlinear regression shows strong correlation with measured permeability, whose correlation coefficient squared is more than 0.9, which means the permeability estimation model is suitable for the study area

    Reservoir Characteristics and Their Controlling Factors in Siliceous Shales of the Upper Permian Dalong Formation, Western Hubei Province, South China

    No full text
    To evaluate the reservoir characteristics of siliceous shale in the Dalong Formation within the late Permian intra-platform rift trough in Western Hubei (China), we studied a drill core from well ED-2 in Western Hubei. To analyze the physical characteristics, pore structure, methane adsorption performance, and their influences on the siliceous shale reservoir, we performed X-ray diffraction, total organic carbon (TOC) content, vitrinite reflectance (Ro, indicating thermal evolution), total porosity and permeability, field emission scanning electron microscopy, CO2 and N2 physical adsorption, and methane isothermal adsorption analyses, among others. Our results show that the Dalong Formation in Western Hubei is an organic-rich (2.6&ndash;14.3 wt.%), highly thermally evolved (Ro = 2.59&ndash;2.76%), siliceous shale containing mainly type-I and type-II1 organic matter. The Dalong siliceous shale has low porosity and permeability and belongs to a larger reservoir with low horizontal permeability (0.002&ndash;335.209 mD) and porosity (1.2&ndash;7.8%). Pores in the shale are mainly organic, inorganic, and microfractures; the organic pores are very developed. The pore volume and specific surface area of the shale are mainly due to micropores and mesopores and are positively correlated with TOC and clay mineral contents and weakly negatively correlated with quartz and carbonate contents. The micropores and mesopores are well developed, improving the methane adsorption capacity, which, in turn, is strongly positively correlated with TOC content. Comprehensive analysis shows that the high organic matter content of the Dalong siliceous shale has the greatest influence on its pore structure; the many organic pores generated after hydrocarbon generation have controlled the development of micropores and mesopores, which is conducive to the adsorption and storage of shale gas. The development of brittle minerals resistant to compaction, such as siliceous minerals, helps preserve organic pores. This study is informative for basin-scale petroleum system investigations, which are essential for understanding oil and gas exploration possibilities and regional petroleum systems

    Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin

    No full text
    The Gudian Rift is a favorable area for deep natural gas exploration in the southern Songliao Basin, and it also records rich information on basin evolution and Mesozoic-Cenozoic plate movements in eastern China.By using the well and high-resolution 3D seismic data, combined with regional tectonics, the geological structure and tectonic evolution of the Gudian Rift were investigated.The results show that the Gudian Rift can be vertically divided into basement, lower, middle and upper structure layers.Due to the subduction of the Pacific Plate beneath to the East Asian Plate and the changes in the regional tectonic stress field since the Late Mesozoic, the Gudian Rift experienced syn-rift, transition, post rift and tectonic inversion periods.The Gudian fault was initially formed from six fault segments in syn rift period(depositional period of the Huoshiling and Shahezi Formations) and the isolated fault segments with different strikes then grew and connected to a unified boundary fault in the late rifting stage(depositional period of the Yingcheng Formation).Afterwards, extensive and intense transtensional activities occurred during transition(depositional period of the Denglouku and Quantou Formations) and depression periods(depositional period of the Qingshankou, Yaojia and Nenjiang Formations), and strong inversion and segmental thrust activities occurred during inversion period(end of the depositional period of the Nenjiang Formation), respectively.This study provides references for the investigation of tectonic activity and evolution in the Songliao Basin and eastern China, and further guides oil and gas exploration

    Reservoir Densification, Pressure Evolution, and Natural Gas Accumulation in the Upper Paleozoic Tight Sandstones in the North Ordos Basin, China

    No full text
    The vague understanding of the coupling relationship among natural gas charging, reservoir densification, and pressure evolution restricted the tight gas exploration in the Lower Shihezi Formation of the Hangjinqi area, north Ordos Basin. In this study, the quantitative porosity evolution model, the pressure evolution process, and the natural gas charging history of tight sandstone reservoirs were constructed by integrated investigation of the reservoir property, the thin section, SEM and cathode luminescence observations, the fluid inclusion analysis and the 1D basin modeling. The results show that the compaction and cementation reduced the primary porosity by 21.79% and 12.41%, respectively. The densification of the reservoir occurred at circa 230 Ma, which was before the natural gas charging time from 192 to 132 Ma. The paleo-overpressure within the tight reservoirs occurred since the Middle Jurassic with the pressure coefficients between 1.1 and 1.55. The continuous uplifting since the Late Cretaceous resulted in the under- and normal-pressure of the Lower Shihezi Formation with the pressure coefficients ranging from 0.67 to 1.05. The results indicate that the densification of the reservoirs was conducive to the formation of paleo-pressure produced by gas generating. The gas predominantly migrated vertically, driven by gas expansion force rather than buoyance and displaced the pore water in the reservoirs near source rocks

    Reservoir Densification, Pressure Evolution, and Natural Gas Accumulation in the Upper Paleozoic Tight Sandstones in the North Ordos Basin, China

    No full text
    The vague understanding of the coupling relationship among natural gas charging, reservoir densification, and pressure evolution restricted the tight gas exploration in the Lower Shihezi Formation of the Hangjinqi area, north Ordos Basin. In this study, the quantitative porosity evolution model, the pressure evolution process, and the natural gas charging history of tight sandstone reservoirs were constructed by integrated investigation of the reservoir property, the thin section, SEM and cathode luminescence observations, the fluid inclusion analysis and the 1D basin modeling. The results show that the compaction and cementation reduced the primary porosity by 21.79% and 12.41%, respectively. The densification of the reservoir occurred at circa 230 Ma, which was before the natural gas charging time from 192 to 132 Ma. The paleo-overpressure within the tight reservoirs occurred since the Middle Jurassic with the pressure coefficients between 1.1 and 1.55. The continuous uplifting since the Late Cretaceous resulted in the under- and normal-pressure of the Lower Shihezi Formation with the pressure coefficients ranging from 0.67 to 1.05. The results indicate that the densification of the reservoirs was conducive to the formation of paleo-pressure produced by gas generating. The gas predominantly migrated vertically, driven by gas expansion force rather than buoyance and displaced the pore water in the reservoirs near source rocks

    Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite

    No full text
    The effect of high voltage pulse (HVP) treatment on the surface chemistry and flotation behaviour of chalcopyrite and pyrite were investigated using single mineral. The results indicated that the effect of HVP treatment on pyrite was more significant than chalcopyrite, both in terms of size reduction degree and flotation behaviour. Despite the stronger resistance to mechanical breakage than chalcopyrite, the proportion of −0.053 mm product of pyrite was higher than chalcopyrite for 12.2 per cent in average after HVP treatment of different pulse numbers. The flotation recovery of chalcopyrite was only slightly reduced after HVP treatment of 130 pulse discharges. However, under the same test conditions, the flotation recovery of pyrite was reduced by 64.1 per cent in average. The flotation behaviour of the two single minerals were in agreement with their surface oxidation behaviour in HVP treatment. XPS analysis and EDTA extraction suggested that chalcopyrite surface had only partially oxidized by HVP treatment; whereas pyrite was deeply oxidized with a large amount of S element converted to be sulphate radicals. The relative permittivity of pyrite, chalcopyrite and water was 33.5, 78.1 and 80 respectively, which led to a ratio of electrical field strength inside pyrite, chalcopyrite and water theoretically being 2.39:1.02:1. As a result, pyrite particles had stronger capability to attract electrical breakdown channel than chalcopyrite, and subjected to more severe size reduction and surface oxidation under the same conditions. On the other hand, the slight surface oxidation of chalcopyrite particles was hypothesized to be caused by the active species (OH, H2O2, etc.) formed during pulse discharge
    corecore