413 research outputs found

    Statistically-secure ORAM with O~(log⁥2n)\tilde{O}(\log^2 n) Overhead

    Full text link
    We demonstrate a simple, statistically secure, ORAM with computational overhead O~(log⁥2n)\tilde{O}(\log^2 n); previous ORAM protocols achieve only computational security (under computational assumptions) or require Ω~(log⁥3n)\tilde{\Omega}(\log^3 n) overheard. An additional benefit of our ORAM is its conceptual simplicity, which makes it easy to implement in both software and (commercially available) hardware. Our construction is based on recent ORAM constructions due to Shi, Chan, Stefanov, and Li (Asiacrypt 2011) and Stefanov and Shi (ArXiv 2012), but with some crucial modifications in the algorithm that simplifies the ORAM and enable our analysis. A central component in our analysis is reducing the analysis of our algorithm to a "supermarket" problem; of independent interest (and of importance to our analysis,) we provide an upper bound on the rate of "upset" customers in the "supermarket" problem

    The spin and charge gaps of the half-filled N-leg Kondo ladders

    Full text link
    In this work, we study N-leg Kondo ladders at half-filling through the density matrix renormalization group. We found non-zero spin and charge gaps for any finite number of legs and Kondo coupling J>0J>0. We also show evidence of the existence of a quantum critical point in the two dimensional Kondo lattice model, in agreement with previous works. Based on the binding energy of two holes, we did not find evidence of superconductivity in the 2D Kondo lattice model close to half-filling.Comment: 4 pages, 1 table, 3 fig

    Dimensional and Temperature Crossover in Trapped Bose Gases

    Full text link
    We investigate the long-range phase coherence of homogeneous and trapped Bose gases as a function of the geometry of the trap, the temperature, and the mean-field interactions in the weakly interacting limit. We explicitly take into account the (quasi)condensate depletion due to quantum and thermal fluctuations, i.e., we include the effects of both phase and density fluctuations. In particular, we determine the phase diagram of the gas by calculating the off-diagonal one-particle density matrix and discuss the various crossovers that occur in this phase diagram and the feasibility of their experimental observation in trapped Bose gases.Comment: One figure added, typos corrected, refernces adde

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Boson gas in a periodic array of tubes

    Full text link
    We report the thermodynamic properties of an ideal boson gas confined in an infinite periodic array of channels modeled by two, mutually perpendicular, Kronig-Penney delta-potentials. The particle's motion is hindered in the x-y directions, allowing tunneling of particles through the walls, while no confinement along the z direction is considered. It is shown that there exists a finite Bose- Einstein condensation (BEC) critical temperature Tc that decreases monotonically from the 3D ideal boson gas (IBG) value T0T_{0} as the strength of confinement P0P_{0} is increased while keeping the channel's cross section, axaya_{x}a_{y} constant. In contrast, Tc is a non-monotonic function of the cross-section area for fixed P0P_{0}. In addition to the BEC cusp, the specific heat exhibits a set of maxima and minima. The minimum located at the highest temperature is a clear signal of the confinement effect which occurs when the boson wavelength is twice the cross-section side size. This confinement is amplified when the wall strength is increased until a dimensional crossover from 3D to 1D is produced. Some of these features in the specific heat obtained from this simple model can be related, qualitatively, to at least two different experimental situations: 4^4He adsorbed within the interstitial channels of a bundle of carbon nanotubes and superconductor-multistrand-wires Nb3_{3}Sn.Comment: 9 pages, 10 figures, submitte

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Direct Measurements of the Branching Fractions for D0→K−e+ÎœeD^0 \to K^-e^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+Îœe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+Îœe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
    • 

    corecore