4,695 research outputs found

    Superradiance Lattice

    Get PDF
    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be extended to three and higher dimensions where no analogous real space lattices exist with new physics waiting to be explored.Comment: 6pages, 4 figure

    A generalized public goods game with coupling of individual ability and project benefit

    Full text link
    Facing a heavy task, any single person can only make a limited contribution and team cooperation is needed. As one enjoys the benefit of the public goods, the potential benefits of the project are not always maximized and may be partly wasted. By incorporating individual ability and project benefit into the original public goods game, we study the coupling effect of the four parameters, the upper limit of individual contribution, the upper limit of individual benefit, the needed project cost and the upper limit of project benefit on the evolution of cooperation. Coevolving with the individual-level group size preferences, an increase in the upper limit of individual benefit promotes cooperation while an increase in the upper limit of individual contribution inhibits cooperation. The coupling of the upper limit of individual contribution and the needed project cost determines the critical point of the upper limit of project benefit, where the equilibrium frequency of cooperators reaches its highest level. Above the critical point, an increase in the upper limit of project benefit inhibits cooperation. The evolution of cooperation is closely related to the preferred group-size distribution. A functional relation between the frequency of cooperators and the dominant group size is found

    Separation of Normal and Premalignant Cervical Epithelial Cells Using Confocal Light Absorption and Scattering Spectroscopic Microscopy Ex Vivo

    Get PDF
    Confocal light absorption and scattering spectroscopic (CLASS) microscopy can detect changes in biochemicals and the morphology of cells. It is therefore used to detect high-grade cervical squamous intraepithelial lesion (HSIL) cells in the diagnosis of premalignant cervical lesions. Forty cervical samples from women with abnormal Pap smear test results were collected, and twenty cases were diagnosed as HSIL; the rest were normal or low-grade cervical squamous intraepithelial lesion (LSIL). The enlarged and condensed nuclei of HSIL cells as viewed under CLASS microscopy were much brighter and bigger than those of non-HSIL cells. Cytological elastic scattered light data was then collected at wavelengths between 400 and 1000 nm. Between 600 nm to 800 nm, the relative elastic scattered light intensity of HSIL cells was higher than that of the non-HSIL. Relative intensity peaks occurred at 700 nm and 800 nm. CLASS sensitivity and specificity results for HSIL and non-HSIL compared to cytology diagnoses were 80% and 90%, respectively. This study demonstrated that CLASS microscopy could effectively detect cervical precancerous lesions. Further study will verify this conclusion before the method is used in clinic for early detection of cervical cancer

    Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections

    Get PDF
    Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameter

    Liposomes with Water as a pH-Responsive Functionality for Targeting of Acidic Tumor and Infection Sites

    Get PDF
    A lipid named DCPA was synthesized under microwave-assisted heating. DCPA possesses a pyridine betaine, hydrophilic group that can be complexed with water through hydrogen bonding (DCPA-H2O). DCPA-H2O liposomes became protonated relatively fast already at p

    Records of volcanic events since AD 1800 in the East Rongbuk ice core from Mt. Qomolangma

    Get PDF
    Continuous Bi profile of the East Rongbuk (ER) ice core near Mt. Qomolangma reveals nine major volcanic events since AD 1800. Compared with Volcanic Explosivity Index (VEI), it shows that the concentrations of Bi in the ER ice core can reflect the major volcanic events within the key areas. This provides a good horizon layer for ice core dating, as well as a basis for reconstructing a long sequence of volcanic records from the Qinghai-Xizang (Tibet) Plateau ice cores

    Proton-mediated burst of dual-drug loaded liposomes for biofilm dispersal and bacterial killing

    Get PDF
    Exposure of infectious biofilms to dispersants induces high bacterial concentrations in blood that may cause sepsis. Preventing sepsis requires simultaneous biofilm dispersal and bacterial killing. Here, self-targeting DCPA(2-(4-((1,5-bis(octadecenoyl)1,5-dioxopentan-2-yl)carbamoyl)pyridin-1-ium-1-yl)acetate) liposomes with complexed water were self-assembled with ciprofloxacin loaded in-membrane and PEGylated as a lipid-membrane component, together with bromelain loaded in-core. Inside biofilms, DCPA-H2O and PEGylated ciprofloxacin became protonated, disturbing the balance in the lipid-membrane to cause liposome-burst and simultaneous release of bromelain and ciprofloxacin. Simultaneous release of bromelain and ciprofloxacin enhanced bacterial killing in Staphylococcus aureus biofilms as compared with free bromelain and/or ciprofloxacin. After tail-vein injection in mice, liposomes accumulated inside intra-abdominal staphylococcal biofilms. Subsequent liposome-burst and simultaneous release of bromelain and ciprofloxacin yielded degradation of the biofilm matrix by bromelain and higher bacterial killing without inducing septic symptoms as obtained by injection of free bromelain and ciprofloxacin. This shows the advantage of simultaneous release from liposomes of bromelain and ciprofloxacin inside a biofilm
    corecore