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Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have

been developed over the past decades with the aim to provide alternatives to

antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can

be loaded into nanocarriers to protect them against de-activation, and to reduce

their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers

such as micelles, can be equipped with stealth and pH-responsive features that

allow self-targeting and accumulation in infectious-biofilms at high concentrations.

Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and

inner-core. Micelles are self-assembled, spherical core-shell structures composed of

single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups

pointing to the micellar core. Liposomes are composed of lipids, self-assembled

into bilayers. The hydrophilic head of the lipids determines the surface properties

of liposomes, while the hydrophobic tail, internal to the bilayer, determines the

fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded

with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated

in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic

antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived

liposomes can be prepared with diameters <100–200 nm, required to prevent

reticulo-endothelial rejection and allow penetration into infectious-biofilms. However,

surface-functionalization of liposomes is considerably more difficult than of micelles,

which explains while self-targeting, pH-responsive liposomes that find their way through

the blood circulation toward infectious-biofilms are still challenging to prepare. Equally,

development of liposomes that penetrate over the entire thickness of biofilms to

provide deep killing of biofilm inhabitants still provides a challenge. The liposomal

phospholipid bilayer easily fuses with bacterial cell membranes to release high

antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation

of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest

advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many

Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics,
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have been demonstrated to be susceptible to these antibiotics when encapsulated in

liposomal nanocarriers. Recently, also progress has been made concerning large-scale

production and long-term storage of liposomes. Therewith, the remaining challenges

to develop self-targeting liposomes that penetrate, accumulate and kill deeply in

infectious-biofilms remain worthwhile to pursue.

Keywords: bacterial biofilm, micelles, zeta potentials, hydrophobicity, lipids, liposomes, infection, fusogenicity

INTRODUCTION

The threat posed to mankind of hard to treat, antibiotic-
resistant infectious biofilms is better realized world-wide than
ever. With cancer being considered more and more as a chronic
disease, infection by antibiotic-resistant bacteria is expected
to become the number one cause of death by the year 2050
(Humphreys and Fleck, 2016). This frightening scenario has
many reasons. First of all, infectious biofilms are tenacious
by nature and antimicrobials have difficulty penetrating the
biofilm matrix embedding its bacterial inhabitants (Gupta et al.,
2018). The biofilmmatrix is composed of Extracellular Polymeric
Substances (EPS) (Bjarnsholt et al., 2013) containing proteins,
polysaccharides, humic acids, and eDNA (Flemming et al.,
2016). The EPS-matrix acts as a glue holding biofilm-bacteria
together and protecting them against the host immune system
and environmental challenges, amongst which antimicrobials
(Liu et al., 2019a). Secondly, rampant overuse of antibiotics has
yielded, and still is yielding new antibiotic-resistant strains that
cannot be killed by known antibiotics (Neville and Jia, 2019).
Thirdly, development of new antibiotics is stalling (N’Guessan
et al., 2018; Jangra et al., 2019), because their effective life-
time before the first resistant strains arise, is becoming shorter
and shorter, decreasing the incentive for commercialization
and therewith clinical use of new antibiotics (Liu et al.,
2019b).

A first challenge in the development of new infection-
control strategies, is to develop an antimicrobial or antimicrobial
delivery-system that allows the antimicrobial to penetrate deeply
into a biofilm and kill biofilm-bacteria across the entire thickness
of the biofilm (Drbohlavova et al., 2013; Liu et al., 2019a).
Many nanotechnology-based drugs and drug-delivery-systems
have been developed over the past decades with the aim
of self-targeting, penetrating and eradicating tumors (Kong

Abbreviations: CF, carboxyfluoresceine; Chol, cholesterol; DGDG,
digalactosyldiacylglycerol; DMPC, dimyristoyl phosphatidylcholine; DMPG,
dimyristoyl phosphatidylglycerol; DOPA, 3,4-dihydroxyphenylalanine;
DOPC, 1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE, 1,2-dioleoyl-3-
trimethylammonium-propane; DOPS, 1,2-dioleoyl-sn-glycero-3-phospho-L-
serine; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DPPC, dipalmitoyl
phosphatidylcholine; DPPG, dipalmitoylphosphatidylglycerol; DSPC, 1,2-
distearoylsn-glycero-3-phosphocholine; DSPE, distearoyl phosphoethanolamine;
EPC, egg phosphatidylcholine; EPS, extracellular polymeric substances; FDA, food
and drug administration; HAD, hexadecylamine; IEP, iso-electric point; LP, lipid-
PEG; MOFs, metal organic framework; MIC, minimal inhibitory concentration;
MRSA, methicillin-resistant Staphylococcus aureus; NPs, nanoparticles; PAE,
poly(β-amino ester); PEG, polyethylene glycol; PSD, poly(methacryloyl
sulfadimethoxine).

et al., 2019; Majumder et al., 2019; Paunovska et al., 2019).
Biofilms and tumors are on the one hand very different, yet
are both characterized by a low pH environment, allowing self-
targeting of pH adaptive, smart carriers (Liu et al., 2016). Also,
their clinical treatment poses the same challenges, including
prevention of resistance and recurrence. Not surprisingly,
new strategies for infection-control are arising nowadays, that
are derived from technologies initially designed for tumor
treatment. Figure 1 gives an overview of nanotechnology-
derived antimicrobial delivery-systems currently considered for
infection-control, many of which are derived from new tumor
treatment strategies.

Nanotechnology-derived antimicrobial delivery systems
have excellent biocompatibility, and can be designed to be
environmentally-responsive and self-targeting (Lopes and
Brandelli, 2018; Wolfmeier et al., 2018; Zhao et al., 2018),
provided their diameter is below the limit for reticulo-
endothelial rejection of around 100–200 nm (Wang et al., 2019).
However, without suitable functionalization of their outermost
surface or drug-loading (Figure 1), their antimicrobial efficacy
is usually low. In conjugated systems, antibiotics, peptides
or other antimicrobials are bound to dendrimers (Kumar
et al., 2015; Xue et al., 2015), and hydrogels (Zendehdel
et al., 2015) which should be done carefully in order not to
sacrifice bio-active groups. To a certain extent, this restricts the
application of antimicrobial-conjugated systems. Alternatively,
antimicrobials can be loaded into nanotechnology-derived
antimicrobial delivery-systems, to protect antimicrobials
underway through the blood circulation from de-activation,
reduce their toxicity and prevent potential, harmful side-effects
of the antimicrobials. Moreover, antimicrobial nanocarriers
can be equipped with stealth and pH-responsive features that
allow self-targeting and accumulation in infectious biofilms
at high concentrations. Micelles can be made for instance,
consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell
and pH-responsive poly(β-amino ester) (PAE). This renders
stealth properties to the micelles at physiological pH due to
the exposure of the PEG-shell allowing their presence in the
blood circulation without negative side-effects and penetration
in a tumor or infectious biofilm. However, once in a more
acidic, pathological site, such as in a tumor (Ray et al., 2019)
or biofilm (Liu et al., 2016; Wu et al., 2019) (becoming even
more acidic toward its bottom; Peeridogaheh et al., 2019),
pH-responsive PAE groups become positively-charged causing
self-targeting and accumulation (Liu et al., 2012, 2016).
Micelles are more suitable for functionalizing of their surface
without affecting their hydrophilicity ratio than liposomes,
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FIGURE 1 | Nanotechnology-derived antimicrobial delivery-systems, including nanofiber-composed hydrogels. Delivery-systems are divided into systems in which

antimicrobials are conjugated to a carrier or loaded into a carrier. Hydrophobic and hydrophilic antimicrobials are indicated in blue and red, respectively.

because of the relatively low molecular weight of the lipids
involved in liposomes (1,200–1,800 g/mol) compared with the
surfactants used in micelles (>8,000 g/mol). Inadvertent leakage
remains a concern in antimicrobial-loaded systems (Kim et al.,
2019).

The two most common nanocarriers considered for drug
loading are micelles and lipid-based liposomes. The structure
and composition of liposomes, also known as vesicles, bear
similarity to the one of cell membranes. The main difference
between micelles and liposomes is the hydrophilicity of
their outer surface and inner core (Table 1). Micelles are
self-assembled, spherical core-shell structures composed of a
single layer of surfactants, with a hydrophilic head-group
and a hydrophobic tail-group pointing to the micellar core.
Liposomes are composed of lipids and due to their amphiphilic
nature can assemble into bilayers, similar to the structure
and composition of cell membranes. The hydrophilic head

of the lipids determines the surface properties of liposomes,
while the hydrophobic tail, internal to the bilayer, determines
the fluidity of liposomal membranes. Therefore, whereas
micelles can only be loaded with hydrophobic antimicrobials
of which there are few candidates, hydrophilic antimicrobials
can be encapsulated in the hydrophilic, aqueous core of
liposomes and hydrophobic or amphiphilic antimicrobials can
be inserted in the phospholipid bilayer. As a consequence,
the number of candidate antimicrobials for liposome-loading,
is relatively large, while the loading capacity of liposomes is
relatively high (Ehsan and Clancy, 2015; Liu et al., 2019a; see
also Table 1).

Apart from offering a wider choice of candidate antimicrobials
for loading and higher loading, another advantage of lipid-
based antimicrobial delivery-system is their fusogenicity, i.e.,
the ability of liposomes to fuse with the outer membrane
of bacteria (see also Table 1), due to the fluidity of their
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TABLE 1 | Main differences between liposomal and micellar drug carriers, candidate antimicrobials for loading into liposomes or micelles and the relative advantages of

both types of nanocarriers.

Liposomes Micelles

Candidate antimicrobials for loading Candidate antimicrobials for loading

Amikacin (Mugabe et al., 2006), Gentamicin (Mugabe et al., 2005, 2006),

Tobramycin (Sachetelli et al., 2000; Marier et al., 2002; Mugabe et al., 2006;

Messiaen et al., 2013), Triclosan (Sanderson et al., 1996), Vancomycin (Nicolosi

et al., 2010; Chakraborty et al., 2012), Azithromycin (Solleti et al., 2015),

Metronidazole (Vyas et al., 2001), Oxacillin (Meers et al., 2008), Daptomycin (Hu

et al., 2019), Antimicrobial peptides (Dashper et al., 2005)

Triclosan (Liu et al., 2016), Curcumin (Huang et al., 2017), Silver NPs (Lin et al.,

2019),

Rifampicin and isoniazid (Praphakar et al., 2019), Bedaquiline (Soria-Carrera

et al., 2019)

Liposome advantages Micelle advantages

- Hydrophilic and hydrophobic antimicrobial loading

- High loading capacity

- Intra-cellular release of cargo through fusion with bacterial cell membranes

- Fusogenicity at the expense of cargo leakage

- FDA approved dosage forms for clinical use

- Relatively little leakage of hydrophobic cargo

- Relatively easy functionalization

Hydrophobic and hydrophilic antimicrobials are indicated in blue and red, respectively.

FIGURE 2 | Similarity-mediated fusion of liposomes into bacterial cell membranes and release of antimicrobial cargo into a bacterium.

phospholipid bilayer structure. The liposomal phospholipid
bilayer resembles the structure of bacterial cell membranes,
which facilitates fusion based on similarity (Figure 2). Upon
fusion, high antimicrobial-doses are directly available inside a
bacterium (Akbarzadeh et al., 2013).

In this review, we summarize the different types of
lipid-based antimicrobial delivery-systems according to
their lipid bilayer composition, membrane fluidity, outer
surface properties and ability to trigger the release of the

encapsulated antimicrobials upon fusion. Applications
and perspectives of liposomal, antimicrobial delivery-
systems for the treatment of bacterial infections will
be discussed.

PREPARATION OF LIPOSOMES

Liposome preparation method is an important factor affecting
the structure and size of liposomes. Although liposome
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preparation methods have been well-established, a short but
comprehensive summary of the most used methods will be given
to allow better understanding by a multi-disciplinary readership
(Figure 3; Pick et al., 2018). In situ lipid synthesis and formation
of liposomes by self-assembly into bilayered lipid structures
yields liposomes of widely varying size. Liposomes can also be
prepared by rehydration of dried lipid films, which spontaneously
yields liposomes, with an enhanced yield when performed on
conducting electrodes in the presence of an applied electric
field. Liposomes size can be well-controlled by filtering, while
sonication can be applied to decrease liposome size. Proteolipids
can be applied in identical ways to create liposomes. Finally, large
liposomes can be used to contain lipids and proteins to form
proteoliposomes in situ, i.e., inside the larger liposomes.

SUMMARY OF DIFFERENT TYPES OF
LIPOSOMES

Liposomes can be classified according to different criteria.
Based on diameter, small (<50 nm), large (50–500 nm) and
giant (>500 nm) liposomes can be distinguished (Banerjee,
2001; Morton et al., 2012). Alternatively, a classification can
be made on the basis of whether a liposome possesses

uni-, oligo-, or multi-lamellar bilayers (Morton et al., 2012;
Manaia et al., 2017). Liposomes can consist of naturally-
occurring lipids or synthetically-made lipids (sometimes called
“artificial” liposomes). Accordingly, liposomes can have widely
different properties and for the purpose of infection-control
(i.e., interaction with negatively-charged bacterial cell surfaces;
Nederberg et al., 2011; Ng et al., 2013), it is relevant to classify
them into natural lipid-based, cationic, anionic, zwitterionic
liposomes, and fusogenic liposomes. Diameter and diameter
distribution are the most important factors for in vivo use
of liposomes (Malekar et al., 2015) and in order to prevent
rejection by the reticulo-endothelial system (Wang et al., 2019)
and allow penetration through water channels (Greiner et al.,
2005) in infectious biofilms, liposomes for infection-control
should preferentially have diameters that maximally range up to
100–200 nm (Liu et al., 2019a). Therefore, we will now confine
this review to smaller liposomes with diameters of maximally
200 nm and briefly summarize the physico-chemistry underlying
these liposomes.

Natural Lipid-Based Liposomes
Natural liposomes are composed of naturally-occurring
phospholipids, such as phosphatidylcholine, phosphatidylserine,

FIGURE 3 | Summary of different liposome preparation methods. (A) in situ liposome formation by lipid synthesis; (B) Rehydration of dried lipid films yielding release

of liposomes; (C) Similar as (B), now for dried proteolipid films; (D) Liposome formation in proteoliposomes (Pick et al., 2018) (with permission of American Chemical

Society).
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soybean lecithin, or egg yolk lecithin, sometimes complemented
with other lipids. Natural lipids contain a polar, hydrophilic
head, and several hydrophobic lipid chains. Since the hydrophilic
head of natural phospholipids is electrically neutral (Smith
et al., 2017), the surface potential of lipids is electrically neutral,
corresponding in general with zeta potentials between −10
and +10mV (Smith et al., 2017; Figure 4). Liposomes in
suspension require zeta potentials more negative than −30mV
or more positive than +30mV in order to experience sufficient
electrostatic double-layer repulsion to create stable suspensions.
Given the importance of zeta potentials for the stability of
liposome suspensions and interaction with their environment,
including proteins or bacteria, liposomes have been equipped
with several cationic and anionic functionalities to adjust their
surface charge (see also Figure 5; Kamaly et al., 2012). In
addition to their stability in suspension, also the stability of the

lipid bilayer in a liposome sometimes needs enforcement, such
as when highly charged lipids are used (Kaszuba et al., 2010)
or due to oxidation of the membrane lipids. Oxidation induced
instability of liposomes can be prevented by adding reductants
to the membrane lipids (Khan et al., 1990).

Cationic Liposomes
Cationic liposomes can be made using natural or synthetic
lipids with cationic functionalities, such as ammonium (Jacobs
et al., 1916; Gottenbos et al., 2001; Lu et al., 2007), sulfonium
(Ghattas and Leroux, 2009), or phosphonium ions (Popa et al.,
2003; Chang et al., 2010; Figure 5). As an example, Figure 6
presents the zeta potentials of cholesterol DSPC liposomes made
positively-charged throughDOPA, containing positively-charged
ammonium groups. Within the range of DOPA concentrations
applied, zeta potentials remained below the critical limit of

FIGURE 4 | Zeta potentials of liposomes. Liposome suspensions are considered to be unstable when their zeta potential is between −30 and +30mV (Manaia et al.,

2017). Zeta potentials between −10 and +10mV are considered to represent uncharged liposomes.

FIGURE 5 | Functional groups of lipids to create differently charged liposomes.
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FIGURE 6 | Zeta potentials in 0.01 mol/L NaCl (pH 7.4–7.7) of cholesterol (Chol), 1,2-distearoylsn-glycero-3-phosphocholine (DSPC) liposomes. Liposomes were

made positively-charged with varying mol% of DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) or negatively-charged with DOPS

(1,2-dioleoyl-sn-glycero-3-phospho-L-serine). Liposomes indicated as DSPC/Chol/LP liposomes were prepared with lipid-PEG (poly-ethylene glycol) added (Smith

et al., 2017) (with permission of Springer).

+30mV required for stable suspensions and accordingly these
liposome suspensions were mentioned to aggregate within 24 h
of processing. Interestingly, addition of 1.6 mol% lipid-PEG
yielded a zeta potential of nearly zero. Yet, lipid-PEG containing
liposome suspensions were described to be stable and stealth
(Kataria et al., 2011), presumably due to steric stabilization and
repulsion. Cationic liposomes have been suggested as a drug-
releasing coating of natural surfaces, such as skin-associated
bacteria (Sanderson and Jones, 1996) or teeth (Nguyen et al.,
2013), both bearing a negative charge.

Instability of the liposomal bilayer structure in drug-loaded
liposomes can result in inadvertent drug leakage (Drulis-Kawa
and Dorotkiewicz-Jach, 2010). The stability of the lipid bilayer
of cationic liposomes can be increased by coating with bacterial
S-layer proteins. Zeta potentials of cationic liposomes composed
of dipalmitoylphosphatidylcholine (DPPC), cholesterol and
hexadecylamine [HDA: (+29.1mV)] became negatively-charged
(−27.1mV) upon coating with S-layer proteins, which increased
their stability against mechanical challenges (Figure 7; Mader
et al., 1999).

Anionic Liposomes
Anionic liposomes bear negatively-charged functional groups
(Figure 5), such as carboxylic (Cheow et al., 2011), phosphoric
or sulfonic acid (Derbali et al., 2019; Zhang and Lemay,
2019). Cholesterol-DSPC liposomes could be made positively-
charged using DOTAP, but using DOPS, negative charge could
be conveyed to these liposomes in a concentration dependent
fashion (Figure 6; Smith et al., 2017). As a main advantage
of anionic liposomes, opposite to cationic liposomes, anionic

FIGURE 7 | Release of fluorescent carboxyfluoresceine (CF) as an indication

of the lipid bilayer stability of dipalmitoylphosphatidylcholine (DPPC),

cholesterol and hexadecylamine (HDA) liposomes as a function of stirring time

in the absence and presence of a bacterial S-layer coating on the liposomes

(Mader et al., 1999) (with permission of Elsevier).

liposomes can more effectively encapsulate positively charged
antimicrobials (Messiaen et al., 2013) and prolong their release
time (Kaszuba et al., 1995; Robinson et al., 1998, 2000; Tang
et al., 2009). Anionic liposomes composed of DPPG and DOPC
could be loaded with eight-fold higher amounts of antibiotic than
uncharged, natural-lipid based liposomes (Table 2; Messiaen
et al., 2013).
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Zwitterionic Liposomes
Whereas, cationic and anionic liposomes usually demonstrate
pH-dependent zeta potentials, they do not show complete charge

TABLE 2 | Increased loading of an antibiotic in anionic liposomes.

Liposome type Zeta potential (mV) Tobramycin concentration (a.u.)

DPPC/Chol −0.5 100

DOPC/DPPG −22.3 800

Tobramycin-loading in anionic liposomes is eight times higher than in natural neutral

liposomes due to the electrostatic interaction between negatively charged lipids and

tobramycin. Data taken from Messiaen et al. (2013).

reversal from being positively to negatively charged. Zwitterionic
lipids have both acidic and alkaline functional groups (Figure 5;
Hu et al., 2019; Makhathini et al., 2019) that allow full charge
reversal below and above their iso-electric point (Figure 8A;
Vila-Caballer et al., 2016; Liu et al., 2018). This feature
allows the fabrication of liposomes that are negatively-charged
under physiological pH conditions and become positively-
charged under more acidic conditions, such as poly(methacryloyl
sulfadimethoxine) (PSD) liposomes (Figure 8B; Couffin-Hoarau
and Leroux, 2004; Ghattas and Leroux, 2009; Lu et al., 2018).
Negative charge at physiological pH values aids transport
of liposomes through the blood circulation without major
interaction with other negatively-charged blood components
(Hamal et al., 2019), while adaptation of a positive charge

FIGURE 8 | pH-dependent behavior of zwitterionic lipids and liposomes. (A) Zwitterionic liposomes reverse their charge from cationic to anionic when suspension pH

increases from below to above the Iso-Electric Point (IEP) of the constituting lipids or vice versa. (B) Charge reversal of poly(methacryloyl sulfadimethoxine) (PSD)

liposomes (Chen et al., 2018) (with permission of Elsevier).
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inside the acidic environment of a biofilm facilitates better
interaction with negatively-charged bacteria (Robinson et al.,
2001; Nederberg et al., 2011; Ng et al., 2013) in the biofilm.

Fusogenic Liposomes
The fusogenicity of liposomes with cellular membranes is
a most distinguishing feature of liposomes and is related
with the fluidity of the lipid bilayer. Generally, lower melting
temperatures of the lipids imply higher fluidity of the liposome
membrane and therewith a greater fusogenicity (Zora and
Željka, 2016). Figure 9 summarizes the relation between
melting temperatures and structure/composition of lipids.
Both location of unsaturated bonds (Figure 9A; Nagahama
et al., 2007) and alkyl chain length (Figure 9B) influence
lipid melting temperatures (Feitosa et al., 2006) and therewith
the fusogenicity of liposomes. Cholesterol hemisuccinate for
instance, combined with dioleoylphosphatidylethanolamine
(DOPE) and dipalmitoylphosphatidylcholine (DPPC) in a 4:2:4

molar ratio yielded highly fusogenic liposomes (Figure 9C).
Increasing fusogenicity however, may go at the expense of the
stability of the lipid bilayer constituting the membrane and
liposomes with increased fusogenicity are more prone to bilayer
membrane instability, rupture, and inadvertent cargo release
(Marier et al., 2002; Li et al., 2013; Figure 9D).

APPLICATION OF ANTIMICROBIAL-
LOADED LIPOSOMES TOWARD
INFECTIOUS BIOFILMS

The problems to be overcome for the successful treatment
of infectious biofilms in the human body are many-fold
and some of them have persisted for centuries. Rather
than aiming for a comprehensive overview of all studies
attempting to apply liposomal antimicrobial-loaded nanocarriers
for infection-control, we first present a brief overview of

FIGURE 9 | Fluidity of liposomes in relation with their lipid structure. Melting temperature Tm of lipids as an indication of fluidity. (A) Melting temperature as a function

of unsaturated bond location in (f sn-1 saturated/sn-2 monosaturated phosphatidylcholine) (Nagahama et al., 2007). (B) Melting temperature of 5.0mM

dialkyldimethylammonium bromide in water as a function of the number (n) of carbon atoms in the alkyl chains (Feitosa et al., 2006) (with permission of Elsevier). (C)

Transmission electron micrographs of the fusion (indicated by the arrows) of fusogenic, DOPE-DPPC-cholesterol hemisuccinate liposomes with E. coli. Bar marker

equals 200 nm (Nicolosi et al., 2010) (with permission of Elsevier). (D) The % fused lipsosomes and % release of fluorescent carboxyfluorescein as a function of the %

digalactosyldiacylglycerol (DGDG) in egg phosphatidylcholine (EPC) liposomes (Hincha et al., 1998) (with permission of Elsevier).
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the problems encountered in the treatment of infectious
biofilms using antimicrobials. Next, it will be addressed which
problems can probably be successfully addressed using liposomal
antimicrobial-loaded nanocarriers, and the steps that need to be
taken for successful downward clinical translation.

Traditional Problems in Antimicrobial
Treatment of Infectious Biofilms
Eradication of infectious biofilms is a highly complicated process
for which there is no adequate treatment available ever since Van
Leeuwenhoek noticed that the vinegar which he used to clean his
teeth from oral biofilm killed only bacteria residing at the outside
of the biofilm, but left the ones in the depth of a biofilm alive (Van
Leewenhoek, 1684). One of the current struggles indeed, still is
the penetration, accumulation and killing of antimicrobials over
the entire thickness of an infectious biofilm, as noticed by Van
Leeuwenhoek over three centuries ago (Figure 10). This includes
prevention of wash-out of an antimicrobial in the dynamic
environment of the human body. In addition, antimicrobials may
be enzymatically de-activated underway to a biofilm in the blood
circulation or once inside a biofilm (Albayaty et al., 2018). Taken
together, these factors make bacterial killing into the depth of a
biofilm impossible (Sutherland, 2001), contributing to recurrence
of infection after treatment (Wolfmeier et al., 2018).

Penetration and accumulation can only occur once the
antimicrobial has “found its way,” often from within the blood
circulation, to the infectious biofilm. Since it may be undesirable
to have high concentrations of an antimicrobial circulating
through the body due to potential collateral tissue damage,
self-targeting carriers are under design that can find their
way at low blood concentrations to accumulate in sufficiently
high amounts in an infectious biofilm (Forier et al., 2014).

Once accumulated inside a biofilm, the antimicrobial should
perform its antimicrobial action, which can either be based
on generating cell wall damage, or entry into a bacterium to
interfere with vital metabolic processes. Both can be difficult,
especially since bacteria have developed a large array of
protective mechanisms, that we summarize under the common
denominator of antimicrobial resistance (Kumar et al., 2016).
Adding to this, is the problem of bacteria seeking shelter against
antimicrobials in mammalian cells (Mantovani et al., 2011), in
whichmany antimicrobials cannot enter. Bacteria have even been
found sheltering in macrophages intended by nature to kill them,
de-activating macrophageal killing mechanisms (Knodler et al.,
2001).

There are no antimicrobials or antimicrobial carriers that
solve all the issues summarized above (see also Figure 10).
Liposomal nanocarriers constitute no exception to this. Yet,
liposomes possess a number of unique qualities, like stealth
properties, protection of encapsulated antimicrobials against de-
activation and entry in tissue cells and bacteria, as will be
summarized below.

Solutions to Traditional Problems in
Antimicrobial Treatment of Infectious
Biofilms Offered by Liposomal
Antimicrobial Nanocarriers
Blood circulation times of liposomes have become much longer
since the inclusion of lipid-PEG in the bilayer membrane.
Liposomes without lipid-PEG were rapidly removed from the
circulation by macrophageal uptake (Hofmann et al., 2010) but
stealth (Romberg et al., 2008) liposomes containing lipid-PEG
demonstrated reduced reticulo-endothelial uptake.

FIGURE 10 | A summary of the traditional problems involved in antimicrobial treatment of infectious biofilms.
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TABLE 3 | Minimal inhibitory concentrations of different bacterial strains against

antibiotic-loaded liposomes.

Strain MIC

against

free antibiotics

(mg/L)

MIC

against liposomal

encapsulated

antibiotics

(mg/L)

References

Vancomycin

E. coli 512 6–25 Nicolosi et al., 2010

512 10.5

Klebsiella 512 25–50

P. aeruginosa 512 50

512 83.7

Acinetobacter

baumanii

512 6–125

S. aureus

(MRSA)

1 0.5 Bhise et al., 2018

Amikacin

P. aeruginosa 8 4 Mugabe et al., 2006

16 4

252 8

4 2

512 8

B. cenocepacia 256 8 Halwani et al., 2007

256 32

128 16

>512 8

4 1

Gentamicin

P. aeruginosa 4 2 Mugabe et al., 2006

16 2

32 4

32 0.5

256 8

B. cenocepacia >512 32 Halwani et al., 2007

256 64

256 16

>512 32

1 0.25

Tobramycin

P. aeruginosa 2 1 Mugabe et al., 2006

4 4

64 2

1 0.5

1024 8

B. cenocepacia 512 8 Halwani et al., 2007

>512 64

128 16

>512 16

1 0.25

Piperacillin

S. aureus 64 32 Nacucchio et al., 1985

Cefepime

P. aeruginosa 8 4 Torres et al., 2012

(Continued)

TABLE 3 | Continued

Strain MIC

against

free antibiotics

(mg/L)

MIC

against liposomal

encapsulated

antibiotics

(mg/L)

References

Ceftazidime

P. aeruginosa 8 4 Torres et al., 2012

Levofloxacin

P. aeruginosa 0.5 0.5 Derbali et al., 2019

Voriconazole

Aspergillus sp. 0.5 0.5 Veloso et al., 2018

0.25 0.25

0.5 0.25

1 0.5

Candida sp. 0.03 0.03

0.06 0.06

0.03 0.03

0.03 0.03

Meropenem

P. aeruginosa 125 1.5 Zahra et al., 2017

62.5 6.25

62.5 6.25

125 50

250 100

25 6.25

250 100

62.5 6.25

250 50

Clarithromycin

S. aureus

ATCC29213

0.25 0.25 Meng et al., 2016

S. aureus MRSA 64 16

P. aeruginosa >256 8–64 Alhajlan et al., 2013

256 8–64

256 8–64

256 8–6,432; 64; 8

>256 8–64

>256 8–64

>256 8–64

>256 8–64

256 8–64

Azithromycin

P. aeruginosa 128 16 Solleti et al., 2015

64 8

512 32

128 16

256 32

512 32

512 128

256 32

512 64

256 16

Multiple MIC values for the same strain, antibiotic and reference, refer to different isolates

of the same strain or different liposomes in the same reference.
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Generally, cationic liposomes demonstrate better interaction
with negatively charged bacterial cell surfaces (Robinson et al.,
2001; Nederberg et al., 2011; Ng et al., 2013). However, pH-
responsive liposomes that self-target from the blood circulation
toward bacteria in an infectious biofilm have not been extensively
explored. Zwitterionic liposomes prepared from pH-responsive
quaternary ammonium chitosan with charge reversal from
−9.08mV at pH 7.4 to +8.92mV at pH 4.5 have been described
for the treatment of periodontal infection (Zhou et al., 2018;
Hu et al., 2019). However, according to Figure 4 this change
does not qualify as a charge reversal as these liposomes would
have to be classified as uncharged at both pH values. Moreover,
periodontal application does not imply self-targeting from the
blood circulation, as required for the treatment of many other,
internal infections. Interestingly, these zwitterionic liposomes
were highly biocompatible and disruptive to periodontal biofilm.

Many Gram-negative and Gram-positive bacterial strains,
resistant to a specific antibiotic free in solution, have been
demonstrated to be susceptible to these antibiotics when
encapsulated in a liposomal nanocarrier (Table 3). This may
arguably be considered as the biggest advantage of liposomes
over other nanocarriers. Although some have suggested that
this must be attributed to the protection offered by liposomal
encapsulation against enzymatic de-activation (Nacucchio et al.,
1985), fusogenicity (Mugabe et al., 2006; Halwani et al., 2007)
of liposomes can also significantly improve the antibacterial
activity of antibiotics (Beaulac et al., 1996; Sachetelli et al.,
1999; Li et al., 2013). Liposomes with enhanced fusogenicity
possessing cholesterol hemisuccinate (Nicolosi et al., 2010)
loaded with vancomycin for instance, had much lower
minimal inhibitory concentrations (MIC) than vancomycin
free in solution against a variety of Gram-negative bacterial
strains, that would be considered vancomycin-resistant based
on their MIC (see also Table 3). Also fusogenic liposomes
composed of dipalmitoylphosphatidylcholine (DPPC) and
dimiristoylphosphatidylglycerol (DMPG) in a ratio of 18:1 (w/w)
loaded with tobramycin eradicated a mucoid chronic, pulmonary
Pseudomonas aeruginosa infection, whereas tobramycin free in
solution was not effective (Beaulac et al., 1996, 1998).

PERSPECTIVES OF LIPID-BASED
ANTIMICROBIAL NANOCARRIERS FOR
TREATING BACTERIAL BIOFILM
INFECTION

Protection of antibiotics against enzymatic de-activation
and fusogenicity to enhance antibiotic efficacy, constitute

unique advantages of liposomal antimicrobial nanocarriers
that justify further research. Challenges in the ongoing
development of liposomal antimicrobial nanocarriers include
the realization of biofilm targeting from the blood circulation,
penetration, and accumulation over the entire thickness
of an infectious biofilm, associated with deep killing in
the biofilm. Deep killing is necessary in order to prevent
recurrence of infection, one of the troublesome features
of clinical infection treatment. In this respect, it is also
worthwhile to investigate whether liposomal antimicrobial
nanocarriers can be designed that aid in the killing of
bacteria seeking shelter in mammalian cells, impenetrable
to many antimicrobials.

Downward clinical translation of liposomal drug nanocarriers
has long been hampered for difficulties in large-scale production
and storage. However, ethanol injection, membrane dispersion,
and Shirasu porous glass membranes have enabled large-scale
production of liposomes (Laouini et al., 2012). Equally, liposome
storage problems are on their way to be solved. For commercial
liposome products, storage in the fluid form is preferred since
lyophilization and subsequent rehydration may lead to size
changes and cargo leakage (Stark et al., 2010). Addition of
stabilizers such as 2-morpholinoethansulfonic acid yielded low
phospholipid degradation in liposomes after 12 months storage
at 2–8◦C (Doi et al., 2019).

Owing to these developments, liposomes are nowadays an
FDA approved form of drug delivery and liposome encapsulated
tobramycin, marketed under the name FluidosomesTM is
clinically applied for the treatment of chronic pulmonary
infections in cystic fibrosis patients. A phase II clinical study is
ongoing in Europe (Zora and Željka, 2016).

In conclusion, the challenges to further develop liposomes
as a novel infection-control strategy supplementing antibiotic
treatment are highly worthwhile to pursue.
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