6 research outputs found

    Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel

    Get PDF
    Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados UnidosFil: Buol, Greg S.. North Carolina State University; Estados UnidosFil: Brandenburg, Rick L.. North Carolina State University; Estados UnidosFil: Reisig, Dominic. North Carolina State University; Estados UnidosFil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; GhanaFil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; MalauiFil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; MalauiFil: Morichetti, Sergio. Aceitera General Deheza; ArgentinaFil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; IndiaFil: Shew, Barbara B.. North Carolina State University; Estados UnidosFil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; IndiaFil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; IndiaFil: Harish, G.. Directorate Of Groundnut Research, Junagadh; IndiaFil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; IndiaFil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; IndiaFil: MacDonald, Greg. University of Florida; Estados UnidosFil: Hoisington, David. University of Georgia; Estados UnidosFil: Rhoads, James. University of Georgia; Estados Unido

    Response of the Peanut (Arachis hypogaea L.) Cultivar Gregory to Interactions of Digging Date and Disease Management

    No full text
    Digging date can have a major impact on pod yield, market grade characteristics, and economic return of peanut (Arachis hypogaea L.) and can be influenced by environmental conditions and disease management. In 17 experiments from 2003 to 2012, economic return of peanut was determined over 5 digging dates spaced 1 week apart beginning in early to mid-September through mid-October. Linear, quadratic, and cubic relationships for economic return versus days after peanut emergence were observed in 3, 6, and 4 experiments, respectively, with no response to digging date observed in 4 experiments. In a second experiment from 2005 to 2012, relationships among canopy defoliation and economic return for peanut at 3 digging dates with 3 fungicide regimes were variable, although increasing the number of fungicide sprays decreased canopy defoliation and increased economic return for later digging dates. Applying a single late-season spray of fungicide as a rescue treatment reduced canopy defoliation in 4 of 8 years and affected economic value in 2 of 8 years

    Influence of Cultural and Pest Management Practices on Performance of Runner, Spanish, and Virginia Market Types in North Carolina

    No full text
    Virginia market type peanut (Arachis hypogaea L.) cultivars are grown primarily in North Carolina, South Carolina, and Virginia in the US, although growers in these states often plant other market types if marketing opportunities are available. Information on yield potential and management strategies comparing these market types is limited in North Carolina. In separate experiments, research was conducted to determine response of runner, Spanish, and Virginia market types to calcium sulfate and inoculation with Bradyrhizobium at planting, planting and digging dates, planting patterns, and seeding rates. In other experiments, control of thrips (Frankliniella spp.) using aldicarb, southern corn rootworm (Diabrotica undecimpunctata Howardi) using chlorpyrifos, eclipta (Eclipta prostrata L.) using threshold-based postemergence herbicides, and leaf spot disease (caused by the fungi Cercospora arachidicola and Cercosporidium personatum) fungicide programs was compared in these market types. Results showed that management practice and market types interacted for peanut pod yield in only the planting date experiment. Yield of runner and Virginia market types was similar and exceeded yield of the Spanish market type in most experiments
    corecore