291 research outputs found

    Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration

    Full text link
    Measuring electron transport (ETp) across proteins in the solid-state offers a way to study electron transfer (ET) mechanism(s) that minimizes solvation effects on the process. Solid state ETp is sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurement technique extends the use of ETp meas-urements down to low temperatures and the concomitant lower current densities, because the larger area still yields measurable currents. Thus, we reported previously a surprising lack of temperature-dependence for ETp via the blue copper protein azurin (Az), from 80K till denaturation, while ETp via apo-(Cu-free) Az was found to be temperature de-pendent \geq 200K. H/D substitution (deuteration) can provide a potentially powerful means to unravel factors that affect the ETp mechanism at a molecular level. Therefore, we measured and report here the kinetic deuterium isotope effect (KIE) on ETp through holo-Az as a function of temperature (30-340K). We find that deuteration has a striking effect in that it changes ETp from temperature independent to temperature dependent above 180K. This change is expressed in KIE values between 1.8 at 340K and 9.1 at \leq 180K. These values are particularly remarkable in light of the previously reported inverse KIE on the ET in Az in solution. The high values that we obtain for the KIE on the ETp process across the protein monolayer are consistent with a transport mechanism that involves through-(H-containing)-bonds of the {\beta}-sheet structure of Az, likely those of am-ide groups.Comment: 15 pages, 3 figures, 2 Supplementary figure

    Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct

    Get PDF
    Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as “K”. We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics

    Ultrafast Carotenoid to Retinal Energy Transfer in Xanthorhodopsin Revealed by the Combination of Transient Absorption and Two-Dimensional Electronic Spectroscopy

    Get PDF
    By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process

    Structural and Functional Consequences of the Weak Binding of Chlorin e6 to Bovine Rhodopsin.

    Get PDF
    The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1 H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with ÎĽm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19 F NMR experiments with samples where 19 F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in 1 H-15 N NMR spectroscopy of 15 N-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin

    Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

    Get PDF
    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff’s base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation

    Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins

    Get PDF
    Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+ÎŁ current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices

    Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

    Get PDF
    Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals
    • …
    corecore