9 research outputs found

    Heparin-Induced Changes of Vascular Endothelial Growth Factor (VEGF<sub>165</sub>) Structure

    No full text
    Vascular endothelial growth factor-A (VEGF-A), a secreted homodimeric glycoprotein, is a critical regulator of angiogenesis in normal and pathological states. The binding of heparin (HE) to VEGF165 (the major form of VEGF-A) modulates the angiogenesis-related cascade, but the mechanism of the observed changes at the structural level is still insufficiently explored. In the present study, we examined the effect of HE on the structural and physicochemical properties of recombinant human VEGF165 (rhVEGF165). The HE binding results in an increase of hydrophobic surface exposure in rhVEGF165 without changes in its secondary structure. Differential scanning calorimetry measurements for intact and HE-bound rhVEGF165 reveals the absence of any pronounced thermally induced transitions in the protein in the temperature range from 20 to 100 °C. The apolar area increase during the heparin binding explains the pronounced HE-induced oligomerization/aggregation of rhVEGF165, as studied by chemical glutaraldehyde cross-linking and dynamic light scattering. Molecular modeling and docking techniques were used to model the full structure of dimeric VEGF165 and to reveal putative molecular mechanisms underlying the function of the VEGF165/HE system. In general, the results obtained can be a basis for explaining the modulating effect of HE on the biological activity of VEGF-A

    Physicochemical Properties of Imidazolium-Based Ionic Nanofluids: Density, Heat Capacity, and Enthalpy of Formation

    No full text
    The heat capacity of ionic nanofluids (INF) of stacked-cup multiwalled carbon nanotubes (MWCNT) and [C<sub>4</sub>mim]­BF<sub>4</sub> and [C<sub>4</sub>mim]­PF<sub>6</sub> ionic liquids (IL) as well as their components was measured over the temperature range of 80–370 K. The specific heat capacity of INF was found be an additive quantity of specific heat capacities of the components. The temperatures of glass transition and fusion of IL in INF did not observably change compared to pure IL. The enthalpy of formation of ([C<sub>4</sub>mim]­BF<sub>4</sub>+MWCNT) INF from its components was found to be negligible compared to the uncertainty of the measurements. All these facts confirm liophobic nature of the studied INF and provide the opportunity to predict thermodynamic properties of similar INF from the data on individual components. The apparent density of the studied MWCNT in INF is lower than those in their unstable dispersions with ionic and molecular liquids due to the high viscosity of INF not allowing penetration of ions into MWCNT and removal of gases from inner parts of MWCNT. The structural parameters of the studied MWCNT were estimated from the obtained density data

    Effects of Osmolytes on Protein-solvent Interactions in Crowded Environment: Analyzing the Effect of TMAO on Proteins in Crowded Solutions

    No full text
    We analyzed the effect of a natural osmolyte, trimethylamine N-oxide (TMAO), on structural properties and conformational stabilities of several proteins under macromolecular crowding conditions by a set of biophysical techniques. We also used the solvent interaction analysis method to look at the peculiarities of the TMAO-protein interactions under crowded conditions. To this end, we analyzed the partitioning of these proteins in TMAO-free and TMAO-containing aqueous two-phase systems (ATPSs). These ATPSs had the same polymer composition of 6.0 wt.% PEG-8000 and 12.0 wt.% dextran-75, and same ionic composition of 0.01 M K/NaPB, pH 7.4. These analyses revealed that there is no direct interaction of TMAO with proteins, suggesting that the TMAO effects on the protein structure in crowded solutions occur via the effects of this osmolyte on solvent properties of aqueous media. The effects of TMAO on protein structure in the presence of polymers were rather complex and protein-specific. Curiously, our study revealed that in highly concentrated polymer solutions, TMAO does not always act to promote further protein folding

    Comprehensive Analysis of the Roles of ‘black’ and ‘gray’ Clusters in Structure and Function of Rat Β-parvalbumin

    No full text
    Recently we found two highly conserved structural motifs in the proteins of the EF-hand calcium binding protein family. These motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif forms a cluster of three amino acids called cluster I (‘black’ cluster) and cluster II (‘grey’ cluster). Cluster I is much more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II includes a mix of aromatic, hydrophobic, and polar amino acids. The ‘black’ and ‘gray’ clusters in rat β-parvalbumin consist of F48, A100, F103 and G61, L64, M87, respectively. In the present work, we sequentially substituted these amino acids residues by Ala, except Ala100, which was substituted by Val. Physical properties of the mutants were studied by circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probe methods. The Ca2+ and Mg2+ binding affinities of these mutants were evaluated by intrinsic fluorescence and equilibrium dialysis methods. In spite of a rather complicated pattern of contributions of separate amino acid residues of the ‘black’ and ‘gray’ clusters into maintenance of rat β-parvalbumin structural and functional status, the alanine substitutions in the cluster I cause noticeably more pronounced changes in various structural parameters of proteins, such as hydrodynamic radius of apo-form, thermal stability of Ca2+/Mg2+-loaded forms, and total energy of Ca2+ binding in comparison with the changes caused by amino acid substitutions in the cluster II. These findings were further supported by the outputs of computational analysis of the effects of these mutations on the intrinsic disorder predisposition of rat β-parvalbumin, which also indicated that local intrinsic disorder propensities and the overall levels of predicted disorder were strongly affected by mutations in the cluster I, whereas mutations in cluster II had less pronounced effects. These results demonstrate that amino acids of the cluster I provide more essential contribution to the maintenance of structuraland functional properties of the protein in comparison with the residues of the cluster II

    Serotonin Promotes Serum Albumin Interaction with the Monomeric Amyloid β Peptide

    No full text
    Prevention of amyloid β peptide (Aβ) deposition via facilitation of Aβ binding to its natural depot, human serum albumin (HSA), is a promising approach to preclude Alzheimer’s disease (AD) onset and progression. Previously, we demonstrated the ability of natural HSA ligands, fatty acids, to improve the affinity of this protein to monomeric Aβ by a factor of 3 (BBRC, 510(2), 248–253). Using plasmon resonance spectroscopy, we show here that another HSA ligand related to AD pathogenesis, serotonin (SRO), increases the affinity of the Aβ monomer to HSA by a factor of 7/17 for Aβ40/Aβ42, respectively. Meanwhile, the structurally homologous SRO precursor, tryptophan (TRP), does not affect HSA’s affinity to monomeric Aβ, despite slowdown of the association and dissociation processes. Crosslinking with glutaraldehyde and dynamic light scattering experiments reveal that, compared with the TRP-induced effects, SRO binding causes more marked changes in the quaternary structure of HSA. Furthermore, molecular docking reveals distinct structural differences between SRO/TRP complexes with HSA. The disintegration of the serotonergic system during AD pathogenesis may contribute to Aβ release from HSA in the central nervous system due to impairment of the SRO-mediated Aβ trapping by HSA

    Ibuprofen Favors Binding of Amyloid-β Peptide to Its Depot, Serum Albumin

    No full text
    The deposition of amyloid-β peptide (Aβ) in the brain is a critical event in the progression of Alzheimer’s disease (AD). This Aβ deposition could be prevented by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aβ. We show here that an exogenous HSA ligand, ibuprofen (IBU), exerts the analogous effect. Plasmon resonance spectroscopy data evidence that a therapeutic IBU level increases HSA affinity to monomeric Aβ40/Aβ42 by a factor of 3–5. Using thioflavin T fluorescence assay and transmission electron microcopy, we show that IBU favors the suppression of Aβ40 fibrillation by HSA. Molecular docking data indicate partial overlap between the IBU/Aβ40-binding sites of HSA. The revealed enhancement of the HSA–Aβ interaction by IBU and the strengthened inhibition of Aβ fibrillation by HSA in the presence of IBU could contribute to the neuroprotective effects of the latter, previously observed in mouse and human studies of AD

    Redox Regulation of Signaling Complex between Caveolin-1 and Neuronal Calcium Sensor Recoverin

    No full text
    Caveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process. Biochemical and biophysical in vitro experiments revealed a two-fold decreased affinity of recoverin to caveolin-1 mutant Y14E mimicking its oxidative stress-induced phosphorylation of the scaffold protein. At the same time, wild-type caveolin-1 demonstrated a 5–10-fold increased affinity to disulfide dimer of recoverin (dRec) or its thiol oxidation mimicking the C39D mutant. The formation of dRec in vitro was not affected by caveolin-1 but was significantly potentiated by zinc, the well-known mediator of redox homeostasis. In the MDCK cell model, oxidative stress indeed triggered Y14 phosphorylation of caveolin-1 and disulfide dimerization of recoverin. Notably, oxidative conditions promoted the accumulation of phosphorylated caveolin-1 in the plasma membrane and the recruitment of recoverin to the same sites. Co-localization of these proteins was preserved upon depletion of intracellular calcium, i.e., under conditions reducing membrane affinity of recoverin but favoring its interaction with caveolin-1. Taken together, these data suggest redox regulation of the signaling complex between recoverin and caveolin-1. During oxidative stress, the high-affinity interaction of thiol-oxidized recoverin with caveolin-1/DRMs may disturb the light-induced translocation of the former within photoreceptors and affect rhodopsin desensitization

    Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding

    Get PDF
    International audienceNeuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca 2+ signals to a wide range of protein targets, including G protein-coupled receptors and their kinases. Here, we demonstrate that NCS-1 also has Zn 2+-binding sites, which affect its structural and functional properties upon filling. Fluorescence and circular dichroism experiments reveal the impact of Zn 2+ binding on NCS-1 secondary and tertiary structure. According to atomic absorption spectroscopy and isothermal titration calorimetry studies, apo-NCS-1 has two high-affinity (4 × 10 6 M −1) and one low-affinity (2 × 10 5 M −1) Zn 2+-binding sites, whereas Mg 2+-loaded and Ca 2+-loaded forms (which dominate under physiological conditions) bind two zinc ions with submicromolar affinity. Metal competition analysis and circular dichroism studies suggest that Zn 2+-binding sites of apo-and Mg 2+-loaded NCS-1 overlap with functional EF-hands of the protein. Consistently, high Zn 2+ concentrations displace Mg 2+ from the EF-hands and decrease the stoichiometry of Ca 2+ binding. Meanwhile, one of the EF-hands of Zn 2+-saturated NCS-1 exhibits a 14-fold higher calcium affinity, which increases the overall calcium sensitivity of the protein. Based on QM/MM molecular dynamics simulations, Zn 2+ binding to Ca 2+-loaded NCS-1 could occur at EF-hands 2 and 4. The high-affinity zinc binding increases the thermal stability of Ca 2+-free NCS-1 and favours the interaction of its Ca 2+-loaded form with target proteins, such as dopamine receptor D2R and GRK1. In contrast, low-affinity zinc binding Frontiers in Molecular Neuroscience | www.frontiersin.org
    corecore