74 research outputs found

    Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review

    Get PDF
    Neonatal encephalopathy (NE) following perinatal asphyxia (PA) is considered an important cause of later neurodevelopmental impairment in infants born at term. This review discusses long-term consequences for general cognitive functioning, educational achievement, neuropsychological functioning and behavior. In all areas reviewed, the outcome of children with mild NE is consistently positive and the outcome of children with severe NE consistently negative. However, children with moderate NE form a more heterogeneous group with respect to outcome. On average, intelligence scores are below those of children with mild NE and age-matched peers, but within the normal range. With respect to educational achievement, difficulties have been found in the domains reading, spelling and arithmetic/mathematics. So far, studies of neuropsychological functioning have yielded ambiguous results in children with moderate NE. A few studies suggest elevated rates of hyperactivity in children with moderate NE and autism in children with moderate and severe NE. Conclusion: Behavioral monitoring is required for all children with NE. In addition, systematic, detailed neuropsychological examination is needed especially for children with moderate NE

    Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes

    Get PDF
    One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA “master regulators” (miR-22 and miR-125) and one candidate pair of “master co-regulators” (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p  =  0.045), total homocysteine levels (tHcy) (p  =  0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
    corecore