13 research outputs found

    Towards Personalized Healthcare in Cardiac Population: The Development of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a ResNet-Based AF Detector

    Full text link
    Cardiovascular diseases (CVDs) are the number one cause of death worldwide. While there is growing evidence that the atrial fibrillation (AF) has strong associations with various CVDs, this heart arrhythmia is usually diagnosed using electrocardiography (ECG) which is a risk-free, non-intrusive, and cost-efficient tool. Continuously and remotely monitoring the subjects' ECG information unlocks the potentials of prompt pre-diagnosis and timely pre-treatment of AF before the development of any life-threatening conditions/diseases. Ultimately, the CVDs associated mortality could be reduced. In this manuscript, the design and implementation of a personalized healthcare system embodying a wearable ECG device, a mobile application, and a back-end server are presented. This system continuously monitors the users' ECG information to provide personalized health warnings/feedbacks. The users are able to communicate with their paired health advisors through this system for remote diagnoses, interventions, etc. The implemented wearable ECG devices have been evaluated and showed excellent intra-consistency (CVRMS=5.5%), acceptable inter-consistency (CVRMS=12.1%), and negligible RR-interval errors (ARE<1.4%). To boost the battery life of the wearable devices, a lossy compression schema utilizing the quasi-periodic feature of ECG signals to achieve compression was proposed. Compared to the recognized schemata, it outperformed the others in terms of compression efficiency and distortion, and achieved at least 2x of CR at a certain PRD or RMSE for ECG signals from the MIT-BIH database. To enable automated AF diagnosis/screening in the proposed system, a ResNet-based AF detector was developed. For the ECG records from the 2017 PhysioNet CinC challenge, this AF detector obtained an average testing F1=85.10% and a best testing F1=87.31%, outperforming the state-of-the-art

    Genome of the rams horn snail Biomphalaria straminea : an obligate intermediate host of schistosomiasis

    Get PDF
    This work was supported by the Hong Kong Research Grant Council Collaborative Research Fund (C4015-20EF), General Research Fund (14100919), NSFC/RGC Joint Research Scheme (N_CUHK401/21), and The Chinese University of Hong Kong Direct Grant (4053433, 4053489). Y.Y., W.L.S., C.F.W., S.T.S.L., and Y.L. were supported by the Ph.D. studentships of The Chinese University of Hong Kong. A.H. is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/N020146/1). T.B. is supported by a studentship from the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (BB/M009122/1). M.E.A.R. is supported by a Ph.D. studentship from the School of Biology and St Andrews University.Background: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. Findings: Using a combination of Illumina short‐read, 10X Genomics linked‐read, and Hi‐C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. Conclusion: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.Publisher PDFPeer reviewe

    Exploratory use of ultrasound to determine whether demyelination following carpal tunnel syndrome co-exists with axonal degeneration

    No full text
    Carpal tunnel syndrome (CTS) accompanied by secondary axonal degeneration cannot be clearly discriminated using the current cross-validated ultrasound severity classification system. This study aimed at exploring cut-off values of ultrasound parameters, including wrist cross-sectional area (W-CSA), wrist perimeter (W-P), ratio of cross-sectional area (R-CSA) and perimeter (R-P), changes of CSA and P from wrist to one third distal forearm (ΔCSA&ΔP) for differentiation. Seventy-three patients (13 male and 60 female) were assigned into group A (demyelination only, n = 40) and group B (demyelination with secondary axonal degeneration, n = 33) based on the outcomes of nerve conduction studies (NCS). Receiver Operative Characteristics (ROC) curves were plotted to obtain sensitivity, specificity, and accuracy of cut-off values for all the ultrasound parameters. The overall identified cut-off values (W-CSA 12.0 mm2, W-P 16.27 mm, R-CSA 1.85, R-P 1.48, ΔCSA 6.98 mm2, ΔP 5.77 mm) had good sensitivity (77.1–88.6%), fair specificity (40–62.2%) and fair-to-good accuracy (0.676–0.758). There were also significant differences in demographics (age and severity gradation, P < 0.001), NCS findings (wrist motor latency and conduction velocity, P < 0.0001; wrist motor amplitude, P < 0.05; distal sensory latency, P < 0.05; sensory amplitude, P < 0.001) and ultrasound measurements (W-CSA, W-P, R-CSA, R-P, ΔCSA&ΔP, P < 0.05) between groups. These findings suggest that ultrasound can be potentially used to differentiate demyelinating CTS with secondary axonal degeneration and provide better treatment guidance

    Data for transcriptomic and iTRAQ proteomic analysis of Anguilla japonica gills in response to osmotic stress

    No full text
    This article contains data related to the two research articles titled Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica) (Tse et al. [1]) and iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica) (Tse et al. [2]). The two research articles show the usefulness of combining transcriptomic and proteomic approaches to provide molecular insights of osmoregulation mechanism in a non-model organism, the Japanese eel. The information presented here combines the raw data from the two studies and provides an overview on the physiological functions of fish gills

    Chronic post-COVID neuropsychiatric symptoms persisting beyond one year from infection: a case-control study and network analysis

    No full text
    Abstract Our study aims to delineate the phenotypes of chronic neuropsychiatric symptoms among adult subjects recovering from their first COVID that occurred more than one year ago. We also aim to explore the clinical and socioeconomic risk factors of having a high loading of chronic neuropsychiatric symptoms. We recruited a post-COVID group who suffered from their first pre-Omicron COVID more than a year ago, and a control group who had never had COVID. The subjects completed app-based questionnaires on demographic, socioeconomic and health status, a COVID symptoms checklist, mental and sleep health measures, and neurocognitive tests. The post-COVID group has a statistically significantly higher level of fatigue compared to the control group (p < 0.001). Among the post-COVID group, the lack of any COVID vaccination before the first COVID and a higher level of material deprivation before the COVID pandemic predicts a higher load of chronic post-COVID neuropsychiatric symptoms. Partial correlation network analysis suggests that the chronic post-COVID neuropsychiatric symptoms can be clustered into two major (cognitive complaints -fatigue and anxiety-depression) and one minor (headache-dizziness) cluster. A higher level of material deprivation predicts a higher number of symptoms in both major clusters, but the lack of any COVID vaccination before the first COVID only predicts a higher number of symptoms in the cognitive complaints-fatigue cluster. Our result suggests heterogeneity among chronic post-COVID neuropsychiatric symptoms, which are associated with the complex interplay of biological and socioeconomic factors

    Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach

    No full text
    Soil biodiversity plays important roles in nutrient recycling in both the environment and agriculture. However, they are generally understudied worldwide. To reveal the diversity of soil macrofauna in Hong Kong, here we initiated a citizen science project involving university, non-governmental organisations and secondary school students and teachers. It is envisioned that the citizen science approach used in this study could be used as a demonstration to future biodiversity sampling and monitoring studies.Throughout a year of monitoring and species sampling across different localities in Hong Kong, 150 soil macrofaunal morphospecies were collected. Eighty five of them were further identified by morphology and DNA barcoding was assigned to each identified morphospecies, yielding a total of 646 DNA barcodes, with new millipede sequences deposited to the GenBank. The soil macrofauna morphospecies in Hong Kong found in this study are mainly dominated by millipedes (23 out of 150) and oligochaetes (15 out of 150). Amongst the twenty three identified millipedes, two polyxenid millipedes, Monographis queenslandica Huynh & Veenstra, 2013 and Alloproctoides remyi Marquet and Condé, 1950 are first recorded in Hong Kong. Information has been curated on an online platform and database (http://biodiversity.sls.cuhk.edu.hk/millipedes). A postcard summarising the findings of millipedes in Hong Kong has also been made as a souvenir and distributed to citizen participants. The identified macrofauna morphospecies and their 646 DNA barcodes in this study established a solid foundation for further research in soil biodiversity

    Genome of the rams horn snail Biomphalaria straminea:an obligate intermediate host of schistosomiasis

    No full text
    Background: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea.Findings: Using a combination of Illumina short‐read, 10X Genomics linked‐read, and Hi‐C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage.Conclusion: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely

    Supporting data for "Genome of the ramshorn snail Biomphalaria straminea - an obligate intermediate host of schistosomiasis"

    No full text
    Schistosomiasis or bilharzia is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection of Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria, and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. Using a combination of Illumina short‐ read, 10X Genomics linked‐ read, and Hi‐ C sequencing data, our 1.005 Gbp B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mbp. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating this renowned insect hormonal system is also present in the lophotrochozoan lineage. This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of biology related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely
    corecore