3,110 research outputs found

    The Mass Function of Dark Halos in Superclusters and Voids

    Full text link
    A modification of the Press-Schechter theory allowing for presence of a background large-scale structure (LSS) - a supercluster or a void, is proposed. The LSS is accounted as the statistical constraints in form of linear functionals of the random overdensity field. The deviation of the background density within the LSS is interpreted in a pseudo-cosmological sense. Using the constraints formalism may help us to probe non-trivial spatial statistics of haloes, e.g. edge and shape effects on boundaries of the superclusters and voids. Parameters of the constraints are connected to features of the LSS: its mean overdensity, a spatial scale and a shape, and spatial momenta of higher orders. It is shown that presence of a non-virialized LSS can lead to an observable deviation of the mass function. This effect is exploited to build a procedure to recover parameters of the background perturbation from the observationally estimated mass function.Comment: 23 pages, 6 figures; to be appeared in Astronomy Reports, 2014, Vol. 58, No. 6, pp. 386-39

    On the Distribution of Haloes, Galaxies and Mass

    Full text link
    The stochasticity in the distribution of dark haloes in the cosmic density field is reflected in the distribution function PV(Nh∣Ύm)P_V(N_h|\delta_m) which gives the probability of finding NhN_h haloes in a volume VV with mass density contrast ÎŽm\delta_m. We study the properties of this function using high-resolution NN-body simulations, and find that PV(Nn∣Ύm)P_V(N_n|\delta_m) is significantly non-Poisson. The ratio between the variance and the mean goes from ∌1\sim 1 (Poisson) at 1+ÎŽmâ‰Ș11+\delta_m\ll 1 to <1<1 (sub-Poisson) at 1+ÎŽm∌11+\delta_m\sim 1 to >1>1 (super-Poisson) at 1+ÎŽm≫11+\delta_m\gg 1. The mean bias relation is found to be well described by halo bias models based on the Press-Schechter formalism. The sub-Poisson variance can be explained as a result of halo-exclusion while the super-Poisson variance at high ÎŽm\delta_m may be explained as a result of halo clustering. A simple phenomenological model is proposed to describe the behavior of the variance as a function of ÎŽm\delta_m. Galaxy distribution in the cosmic density field predicted by semi-analytic models of galaxy formation shows similar stochastic behavior. We discuss the implications of the stochasticity in halo bias to the modelling of higher-order moments of dark haloes and of galaxies.Comment: 10 pages, 6 figures, Latex using MN2e style. Minor changes. Accepted for publication in MNRA

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    Nonlinear Gravitational Clustering: dreams of a paradigm

    Get PDF
    We discuss the late time evolution of the gravitational clustering in an expanding universe, based on the nonlinear scaling relations (NSR) which connect the nonlinear and linear two point correlation functions. The existence of critical indices for the NSR suggests that the evolution may proceed towards a universal profile which does not change its shape at late times. We begin by clarifying the relation between the density profiles of the individual halo and the slope of the correlation function and discuss the conditions under which the slopes of the correlation function at the extreme nonlinear end can be independent of the initial power spectrum. If the evolution should lead to a profile which preserves the shape at late times, then the correlation function should grow as a2a^2 [in a Ω=1\Omega=1 universe] een at nonlinear scales. We prove that such exact solutions do not exist; however, ther e exists a class of solutions (``psuedo-linear profiles'', PLP's for short) which evolve as a2a^2 to a good approximation. It turns out that the PLP's are the correlation functions which arise if the individual halos are assumed to be isothermal spheres. They are also configurations of mass in which the nonlinear effects of gravitational clustering is a minimum and hence can act as building blocks of the nonlinear universe. We discuss the implicatios of this result.Comment: 32 Pages, Submitted to Ap

    The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-associated lipodystrophy syndrome (HALS) is characterized by insulin resistance, abnormal lipid metabolism and redistribution of body fat. To date, there has been no quantitative summary of the effects of insulin sensitizing-agents for the treatment of this challenging problem.</p> <p>Methods</p> <p>We searched MEDLINE, the Cochrane Library, clinical trial registries, conference proceedings and references for randomized trials evaluating rosiglitazone, pioglitazone or metformin in patients with evidence of HALS (last update December 2009). Two reviewers independently abstracted data and assessed quality using a standard form. We contacted authors for missing data and calculated weighted mean differences (WMD) and 95% confidence intervals (CI) for each outcome.</p> <p>Results</p> <p>Sixteen trials involving 920 patients met inclusion criteria. Rosiglitazone modestly improved fasting insulin (WMD -3.67 mU/L; CI -7.03, -0.31) but worsened triglycerides (WMD 32.5 mg/dL; CI 1.93, 63.1), LDL (WMD 11.33 mg/dL; CI 1.85, 20.82) and HDL (WMD -2.91 mg/dL; CI -4.56, -1.26) when compared to placebo or no treatment in seven trials. Conversely, pioglitazone had no impact on fasting insulin, triglycerides or LDL but improved HDL (WMD 7.60 mg/dL; CI 0.20, 15.0) when compared to placebo in two trials. Neither drug favorably impacted measures of fat redistribution. Based on six trials with placebo or no treatment controls, metformin reduced fasting insulin (WMD -8.94 mU/L; CI -13.0, -4.90), triglycerides (WMD -42.87 mg/dL; CI -73.3, -12.5), body mass index (WMD -0.70 kg/m<sup>2</sup>; CI -1.09, -0.31) and waist-to-hip ratio (WMD -0.02; CI -0.03, 0.00). Three trials directly compared metformin to rosiglitazone. While effects on insulin were comparable, lipid levels and measures of fat redistribution all favored metformin. Severe adverse events were uncommon in all 16 trials.</p> <p>Conclusion</p> <p>Based on our meta-analysis, rosiglitazone should not be used in HALS. While pioglitazone may be safer, any benefits appear small. Metformin was the only insulin-sensitizer to demonstrate beneficial effects on all three components of HALS.</p

    Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions

    Get PDF
    We present an analytic model for the fully nonlinear power spectrum P and bispectrum Q of the cosmological mass density field. The model is based on physical properties of dark matter halos, with the three main model inputs being analytic halo density profiles, halo mass functions, and halo-halo spatial correlations, each of which has been well studied in the literature. We demonstrate that this new model can reproduce the power spectrum and bispectrum computed from cosmological simulations of both an n=-2 scale-free model and a low-density cold dark matter model. To enhance the dynamic range of these large simulations, we use the synthetic halo replacement technique of Ma & Fry (2000a), where the original halos with numerically softened cores are replaced by synthetic halos of realistic density profiles. At high wavenumbers, our model predicts a slope for the nonlinear power spectrum different from the often-used fitting formulas in the literature based on the stable clustering assumption. Our model also predicts a three-point amplitude Q that is scale dependent, in contrast to the popular hierarchical clustering assumption. This model provides a rapid way to compute the mass power spectrum and bispectrum over all length scales where the input halo properties are valid. It also provides a physical interpretation of the clustering properties of matter in the universe.Comment: Final version to appear in the Astrophysical Journal 544 (2000). Minor revisions; 1 additional figure. 25 pages with 6 inserted figure

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r∌1h−1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h−1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro

    Cosmological Three-Point Function: Testing The Halo Model Against Simulations

    Full text link
    We perform detailed comparison of the semi-analytic halo model predictions with measurements in numerical simulations of the two and three point correlation functions (3PCF), as well as power spectrum and bispectrum. We discuss the accuracy and self-consistency of the halo model description of gravitational clustering in the non-linear regime and constrain halo model parameters. We exploit the recently proposed multipole expansion of three point statistics that expresses rotation invariance in the most natural way. This not only offers technical advantages by reducing the integrals required for the halo model predictions, but amounts to a convenient way of compressing the information contained in the 3PCF. We find that, with an appropriate choice of the halo boundary and mass function cut-off, halo model predictions are in good agreement with the bispectrum measured in numerical simulations. However, the halo model predicts less than the observed configuration dependence of the 3PCF on ~ Mpc scales. This effect is mainly due to quadrupole moment deficit, possibly related to the assumption of spherical halo geometry. Our analysis shows that using its harmonic decomposition, the full configuration dependence of the 3PCF in the non-linear regime can be compressed into just a few numbers, the lowest multipoles. Moreover, these multipoles are closely related to the highest signal to noise eigenmodes of the 3PCF. Therefore this estimator may simplify future analyses aimed at constraining cosmological and halo model parameters from observational data.Comment: Minor corrections. Accepted for publication by Ap
    • 

    corecore