9 research outputs found

    Could the Anti-Chaperone VER155008 Replace Temozolomide for Glioma Treatment

    Get PDF
    Cancer inducible molecular chaperone HSP90 is of great importance as an anticancer target. Proteomic analysis showed that inhibiting HSP90 by the geldanamycin derivative, 17-AAG elevated the expression of the co-chaperone Hsp70. In this study we used HSP90 selective inhibitor 17-AAG and HSP70/90 dual inhibitor, VER155008 (VER) in U87-MG glioma cells. miRNAs microarray technology was used to evaluate the efficacy of these inhibitory drugs compared with temozolomide (TMZ), used as a standard treatment for glioma. Microarrays data identified 154 differentially expressed miRNAs using stringent or unstringent parameters. 16 miRNAs were overlapped between treatments, 13 upregulated and one downregulated miRNA were overlapped between TMZ and VER. The miRNA target prediction software was used for these overlapped miRNAs and identified 6 of the 13 upregulated miRNAs target methyltransferase genes. The IC50, together with Akt and HSP70 and 90 protein level data favour VER and TMZ to 17-AAG, however due to the selectivity of VER to cancer cells as a potent antichaperon, it may be more favourable to the standard TMZ

    Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells?

    Get PDF
    The molecular chaperone heat shock protein 90 alpha (Hsp90α) has been recognized in various tumours including glioma. This pilot study using a proteomic approach analyses the downstream effects of Hsp90 inhibition using 17-allylamino-17-demethoxygeldanamycin (17AAG) and a short hairpin RNA (shRNA) oligonucleotide targeting hsp90α (shhsp90α) in the U87-MG glioma cell line. Preliminary data coupled with bioinformatic analysis identified several known and unknown Hsp90 client proteins that demonstrated a change in their protein expression after Hsp90 inhibition, signifying an alteration in the canonical pathways of cell cycle progression, apoptosis, cell invasion, angiogenesis, and metastasis. Members of the glycolysis pathway were upregulated, demonstrating increased dependency on glycolysis for energy source by the treated glioma cells. Upregulated proteins also include Hsp70 and members of its family such as Hsp27 and gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function after Hsp90 inhibition. Considering Hsp70’s role in antiapoptosis, it was postulated that a combination therapy involving a multitarget approach could be carried out. Consequently inhibition of both Hsp90 and Hsp70 in U87-MG glioma cells resulted in 60% cell death indicating the importance of combination therapy for glioma therapeutics

    Could Upregulated Hsp70 Protein Compensate for the Hsp90-Silence-Induced Cell Death in Glioma Cells?

    Get PDF
    The molecular chaperone heat shock protein 90 alpha (Hsp90α) has been recognized in various tumours including glioma. This pilot study using a proteomic approach analyses the downstream effects of Hsp90 inhibition using 17-allylamino-17-demethoxygeldanamycin (17AAG) and a short hairpin RNA (shRNA) oligonucleotide targeting hsp90α (shhsp90α) in the U87-MG glioma cell line. Preliminary data coupled with bioinformatic analysis identified several known and unknown Hsp90 client proteins that demonstrated a change in their protein expression after Hsp90 inhibition, signifying an alteration in the canonical pathways of cell cycle progression, apoptosis, cell invasion, angiogenesis, and metastasis. Members of the glycolysis pathway were upregulated, demonstrating increased dependency on glycolysis for energy source by the treated glioma cells. Upregulated proteins also include Hsp70 and members of its family such as Hsp27 and gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function after Hsp90 inhibition. Considering Hsp70’s role in antiapoptosis, it was postulated that a combination therapy involving a multitarget approach could be carried out. Consequently inhibition of both Hsp90 and Hsp70 in U87-MG glioma cells resulted in 60% cell death indicating the importance of combination therapy for glioma therapeutics

    A novel series of phenolic temozolomide (TMZ) esters with 4 to 5-fold increased potency, compared to TMZ, against glioma cells irrespective of MGMT expression†

    Get PDF
    The standard of care treatment for patients diagnosed with glioblastoma multiforme (GBM) is temozolomide (TMZ). Tumour resistance to TMZ results in significantly limited clinical effectiveness. There is therefore an inherent need for alternatives to TMZ capable of overcoming resistance associated with MGMT and MMR. In the present study, a series of ester and amide analogues of TMZ, modified at position 8 on the imidazole ring, were prepared and investigated for antiproliferative properties. It was found that phenolic ester analogues of TMZ displayed increased potency, of up to 5-fold, against specified glioblastoma cell lines. The encouraging results displayed by the phenolic TMZ esters prompted further investigations against patient-derived primary glioblastoma cultures. The primary cultures, BTNW914 and BTNW374, were MGMT positive and MGMT negative, respectively. Lead phenolic TMZ esters were found to decrease viability in primary cells at clinically relevant concentrations, irrespective of MGMT expression. Furthermore, TMZ was found to be ineffective against the same primary cells at clinically relevant concentrations. The novel phenyl ester analogues of TMZ, described in this study, could have potential chemotherapeutic properties for the treatment of GBM, overcoming the resistance associated with the expression of MGMT

    Identifying Reliable Diagnostic/Predictive Biomarkers for Rheumatoid Arthritis

    Get PDF
    Introduction and objective: Elevated C-reactive protein is usually a good indicator of rheumatoid arthritis (RA); however, there are limitations that compromise its specificity and therefore there is an urgent need to identify more reliable diagnostic biomarkers to detect early stages of RA. In addition, identifying the correct therapeutic biomarker for the treatment of RA using methotrexate (MTX) would greatly increase the benefits experienced by the patients. Materials and methods: Primary normal synoviocytes human fibroblast-like synoviocytes (HFLS) and its phenotype rheumatic HFLS-RA cells were chosen for this study. The HFLS-RA–untreated and MTX-treated cells were subjected to microarray analysis. Results: Microarray data identified 74 differentially expressed genes. These genes were mapped against an RA inflammatory pathway, shortlisting 10 candidate genes. Gene expression profiling of the 10 genes were studied. Fold change (FC) was calculated to determine the differential expression of the samples. Discussion: The transcription profiles of the 10 candidate genes were highly induced in HFLS-RA cells compared with HFLS cells. However, on treating the HFLS-RA cells with MTX, the transcription profiles of these genes were highly downregulated. The most significant expression FC difference between HFLS and HFLS-RA (treated and untreated) was observed with HSPA6, MMP1, MMP13, and TNFSF10 genes. Conclusions: The data from this study suggest the use of HSPA6, MMP1, MMP13, and TNFSF10 gene expression profiles as potential diagnostic biomarkers. In addition, these gene profiles can help in predicting the therapeutic efficacy of MTX

    Temperature and Solvent Facilitated Extrusion Based 3D Printing for Pharmaceuticals.

    Get PDF
    On demand manufacturing of patient-specific oral doses provides significant advantages to patients and healthcare staff. Several 3D printing (3DP) technologies have been proposed as a potential digital alternative to conventional manufacturing of oral tablets. For additive manufacturing approach to be successful for on-demand preparation, a facile process with minimal preparation steps and training requirements is needed. A novel hybrid approach to the 3D printing process is demonstrated here based on combined both a solvent and heating to facilitate extrusion. The system employed a moderate elevated temperature range (65-100 C), a brief drying period, and a simple set-up. In this approach, a compact material cylinder is used as a pharmaceutical ink to be extruded in a temperature-controlled metal syringe. The process proved compatible with hygroscopic polymers [Poly(vinyl alcohol (PVA) and polyvinylpyrrolidone (PVP)] and a number of pharmaceutical fillers (lactose, sorbitol and D-mannitol). The fabricated tablets demonstrated compendial acceptable weight and content uniformity as well as mechanical resistance. In vitro drug release of theophylline from 3D printed tablets was dependant on the nature of the polymer and its molecular weight. This reported approach offers significant advantages compared to other 3DP technologies: simplification of pre-product, the use of a moderate temperature range, a minimal drying period, and avoiding the use of mechanically complicated machinery. In the future, we envisage the use of this low-cost and facile approach to fabricate small batches of bespoke tablets. [Abstract copyright: Copyright © 2020. Published by Elsevier B.V.

    Investigating the Stability of Six Phenolic TMZ Ester Analogues, Incubated in the Presence of Porcine Liver Esterase and Monitored by HPLC

    No full text
    Previous published data from our group showed the encouraging in vitro activities of six phenolic temozolomide (TMZ) ester analogues (ES8-ES12 and ES14) with up to a five-fold increase in potency compared to TMZ against glioblastoma multiform cell lines and TMZ-resistant O -methylguanine-DNA methyl transferase (MGMT)-positive primary cells. This study investigated the stabilities of the six phenolic TMZ ester analogues in the presence of porcine liver esterase (PLE) as a hydrolytic enzyme, using high-performance liquid chromatography (HPLC), monitored by a diode-array detector (DAD). Determining the rates of hydrolysis of the esters provided a useful insight into the feasibility of progressing them to the next phase of drug development. Fifty percent of TMZ esters consisting of nitro, chloro, phenyl and tolyl groups (ES9, ES10, ES12 and ES14) were hydrolysed within the first 4.2 min of PLE exposure, while the TMZ esters consisting of methoxy and nitrile groups (ES8 and ES11) demonstrated increased stability, with 50% hydrolysis achieved in 7.3 and 13.7 min, respectively. In conclusion, the survival of these phenolic TMZ esters on route to the target site of a brain tumor would be a challenge, mainly due to the undesirable rapid rate of hydrolysis. These findings therefore pose a question regarding the effectiveness of these esters in an in vivo setting

    Can hsp90α-Targeted siRNA Combined With TMZ Be a Future Therapy for Glioma?

    No full text
    Hsp90α's vital role in cell cycle progression and apoptosis together with its presence in gliomas and absence in normal tissue, make it a credible target for cancer therapy. Three sets of dsRNA oligos designed to align different regions of the hsp90α sequence were used to downregulate hsp90α. SiRNA 1, 2, and 3 resulted in significant levels of silencing of hsp90α after 48 hr treatment (p < .0001). Concurrent treatment of the glioma cell line U87-MG with siRNA 1 and temozolomide (TMZ) resulted in a 13-fold reduction in the dose of TMZ required to achieve a similar effect if TMZ was used alone

    Can The Lack of HSP90α Protein in Brain Normal Tissue and Cell Lines, Rationalise it as a Possible Therapeutic Target for Gliomas?

    No full text
    Despite studies suggesting a role for HSP90α in tumorigenesis, there are no reports as to its expression in normal human brain tissue. In this study, the expression of HSP90α was evaluated in both cell lines (3 gliomas and 2 controls) and brain tissue specimens of 10 patients (8 gliomas and 2 normal brain tissues). No HSP90α protein was detected in either normal cell lines or normal brain tissue. However, 8/8 glioma tissues and 3/3 glioma cell lines did express HSP90α. These findings provide a rationale for targeting HSP90α protein as a therapeutic candidate for glioma
    corecore