96 research outputs found
Genome-wide association study of phenotypes measuring progression from first cocaine or opioid use to dependence reveals novel risk genes
AIM: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted.
METHODS: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts.
RESULTS: In the discovery sample, three independent regions containing variants associated with time to dependence at
CONCLUSIONS: Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs
Genome-wide association study of stimulant dependence
Stimulant dependence is heritable, but specific genetic factors underlying the trait have not been identified. A genome-wide association study for stimulant dependence was performed in a discovery cohort of African- (AA) and European-ancestry (EA) subjects ascertained for genetic studies of alcohol, opioid, and cocaine use disorders. The sample comprised individuals with DSM-IV stimulant dependence (393 EA cases, 5288 EA controls; 155 AA cases, 5603 AA controls). An independent cohort from the family-based Collaborative Study on the Genetics of Alcoholism (532 EA cases, 7635 EA controls; 53 AA cases, AA 3352 controls) was used for replication. One variant in SLC25A16 (rs2394476, p = 3.42 × 10-10, odds ratio [OR] = 3.70) was GWS in AAs. Four other loci showed suggestive evidence, including KCNA4 in AAs (rs11500237, p = 2.99 × 10-7, OR = 2.31) which encodes one of the potassium voltage-gated channel protein that has been linked to several other substance use disorders, and CPVL in the combined population groups (rs1176440, p = 3.05 × 10-7, OR = 1.35), whose expression was previously shown to be upregulated in the prefrontal cortex from users of cocaine, cannabis, and phencyclidine. Analysis of the top GWAS signals revealed a significant enrichment with nicotinic acetylcholine receptor genes (adjusted p = 0.04) and significant pleiotropy between stimulant dependence and alcohol dependence in EAs (padj = 3.6 × 10-3), an anxiety disorder in EAs (padj = 2.1 × 10-4), and ADHD in both AAs (padj = 3.0 × 10-33) and EAs (padj = 6.7 × 10-35). Our results implicate novel genes and pathways as having roles in the etiology of stimulant dependence
Genome-wide association study of opioid cessation
The United States is experiencing an epidemic of opioid use disorder (OUD) and overdose-related deaths. However, the genetic basis for the ability to discontinue opioid use has not been investigated. We performed a genome-wide association study (GWAS) of opioid cessation (defined as abstinence from illicit opioids for \u3e1 year or \u3c6 months before the interview date) in 1130 African American (AA) and 2919 European ancestry (EA) participants recruited for genetic studies of substance use disorders and who met lifetime Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria for OUD. Association tests performed separately within each ethnic group were combined by meta-analysis with results obtained from the Comorbidity and Trauma Study. Although there were no genome-wide significant associations, we found suggestive associations with nine independent loci, including three which are biologically relevant: rs4740988 i
Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking
AimsTo extend the previously identified association between a single nucleotide polymorphism (SNP) in neuronal acetylcholine receptor subunit alpha-5 (CHRNA5) and nicotine dependence to current smoking and initial smoking-experience phenotypes.Design, setting, participantsCase–control association study with a community-based sample, comprising 363 Caucasians and 72 African Americans (203 cases, 232 controls).MeasurementsCases had smoked ≥ five cigarettes/day for ≥ 5 years and had smoked at their current rate for the past 6 months. Controls had smoked between one and 100 cigarettes in their life-time, but never regularly. Participants also rated, retrospectively, pleasurable and displeasurable sensations experienced when they first smoked. We tested for associations between smoking phenotypes and the top 25 SNPs tested for association with nicotine dependence in a previous study.FindingsA non-synonymous coding SNP in CHRNA5, rs16969968, was associated with case status [odds ratio (OR) = 1.5, P = 0.01] and, in Caucasians, with experiencing a pleasurable rush or buzz during the first cigarette (OR = 1.6, P = 0.01); these sensations were associated highly with current smoking (OR = 8.2, P = 0.0001).ConclusionsWe replicated the observation that the minor allele of rs16969968 affects smoking behavior, and extended these findings to sensitivity to smoking effects upon experimentation. While the ability to test genetic associations was limited by sample size, the polymorphism in the CHRNA5 subunit was shown to be associated significantly with enhanced pleasurable responses to initial cigarettes in regular smokers in an a priori test. The findings suggest that phenotypes related to subjective experiences upon smoking experimentation may mediate the development of nicotine dependence
ACSL6 Is Associated with the Number of Cigarettes Smoked and Its Expression Is Altered by Chronic Nicotine Exposure
Individuals with schizophrenia tend to be heavy smokers and are at high risk for tobacco dependence. However, the nature of the comorbidity is not entirely clear. We previously reported evidence for association of schizophrenia with SNPs and SNP haplotypes in a region of chromosome 5q containing the SPEC2, PDZ-GEF2 and ACSL6 genes. In this current study, analysis of the control subjects of the Molecular Genetics of Schizophrenia (MGS) sample showed similar pattern of association with number of cigarettes smoked per day (numCIG) for the same region. To further test if this locus is associated with tobacco smoking as measured by numCIG and FTND, we conducted replication and meta-analysis in 12 independent samples (n\u3e16,000) for two markers in ACSL6 reported in our previous schizophrenia study. In the meta-analysis of the replication samples, we found that rs667437 and rs477084 were significantly associated with numCIG (p = 0.00038 and 0.00136 respectively) but not with FTND scores. We then used in vitro and in vivo techniques to test if nicotine exposure influences the expression of ACSL6 in brain. Primary cortical culture studies showed that chronic (5-day) exposure to nicotine stimulated ACSL6 mRNA expression. Fourteen days of nicotine administration via osmotic mini pump also increased ACSL6 protein levels in the prefrontal cortex and hippocampus of mice. These increases were suppressed by injection of the nicotinic receptor antagonist mecamylamine, suggesting that elevated expression ofACSL6 requires nicotinic receptor activation. These findings suggest that variations in theACSL6 gene may contribute to the quantity of cigarettes smoked. The independent associations of this locus with schizophrenia and with numCIG in non-schizophrenic subjects suggest that this locus may be a common liability to both conditions
Genome-wide association study of phenotypes measuring progression from first cocaine or opioid use to dependence reveals novel risk genes
Aim: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted.
Methods: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts.
Results: In the discovery sample, three independent regions containing variants associated with time to dependence at P < 5 x 10-8 were identified, one (rs61835088 = 1.03 x 10-8) for cocaine in the combined EA-AA meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in intergenic regions of chromosomes 4 (rs4860439, P = 1.37 x 10-8) and 9 (rs7032521, P = 3.30 x 10-8). After meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 3.71 x 10-9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 x 10-8) that missed the significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD.
Conclusions: Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs
Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans
INTRODUCTION:
African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power.
METHODS:
We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs.
RESULTS:
Two SNPs at novel loci, rs112404845 (P = 3.8 × 10-8), upstream of COBL, and rs16961023 (P = 4.6 × 10-8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability.
DISCUSSION:
An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS
Genome-wide association study of rate of cognitive decline in Alzheimer’s Disease patients identifies novel genes and pathways
Introduction: Variability exists in the disease trajectories of Alzheimer's disease (AD) patients. We performed a genome-wide association study to examine rate of cognitive decline (ROD) in patients with AD.
Methods: We tested for interactions between genetic variants and time since diagnosis to predict the ROD of a composite cognitive score in 3946 AD cases and performed pathway analysis on the top genes.
Results: Suggestive associations (P < 1.0 × 10-6 ) were observed on chromosome 15 in DNA polymerase-γ (rs3176205, P = 1.11 × 10-7 ), chromosome 7 (rs60465337,P = 4.06 × 10-7 ) in contactin-associated protein-2, in RP11-384F7.1 on chromosome 3 (rs28853947, P = 5.93 × 10-7 ), family with sequence similarity 214 member-A on chromosome 15 (rs2899492, P = 5.94 × 10-7 ), and intergenic regions on chromosomes 16 (rs4949142, P = 4.02 × 10-7 ) and 4 (rs1304013, P = 7.73 × 10-7 ). Significant pathways involving neuronal development and function, apoptosis, memory, and inflammation were identified.
Discussion: Pathways related to AD, intelligence, and neurological function determine AD progression, while previously identified AD risk variants, including the apolipoprotein (APOE) ε4 and ε2 variants, do not have a major impact
Association of OPRM1 Functional Coding Variant With Opioid Use Disorder: A Genome-Wide Association Study.
Importance: With the current opioid crisis, it is important to improve understanding of the biological mechanisms of opioid use disorder (OUD). Objectives: To detect genetic risk variants for OUD and determine genetic correlations and causal association with OUD and other traits. Design, Setting, and Participants: A genome-wide association study of electronic health record-defined OUD in the Million Veteran Program sample was conducted, comprising 8529 affected European American individuals and 71 200 opioid-exposed European American controls (defined by electronic health record trajectory analysis) and 4032 affected African American individuals and 26 029 opioid-exposed African American controls. Participants were enrolled from January 10, 2011, to May 21, 2018, with electronic health record data for OUD diagnosis from October 1, 1999, to February 7, 2018. Million Veteran Program results and additional OUD case-control genome-wide association study results from the Yale-Penn and Study of Addiction: Genetics and Environment samples were meta-analyzed (total numbers: European American individuals, 10 544 OUD cases and 72 163 opioid-exposed controls; African American individuals, 5212 cases and 26 876 controls). Data on Yale-Penn participants were collected from February 14, 1999, to April 1, 2017, and data on Study of Addiction: Genetics and Environment participants were collected from 1990 to 2007. The key result was replicated in 2 independent cohorts: proxy-phenotype buprenorphine treatment in the UK Biobank and newly genotyped Yale-Penn participants. Genetic correlations between OUD and other traits were tested, and mendelian randomization analysis was conducted to identify potential causal associations. Main Outcomes and Measures: Main outcomes were International Classification of Diseases, Ninth Revision-diagnosed OUD or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision-diagnosed OUD (Million Veteran Program), and DSM-IV-defined opioid dependence (Yale-Penn and Study of Addiction: Genetics and Environment). Results: A total of 114 759 individuals (101 016 men [88%]; mean [SD] age, 60.1 [12.8] years) were included. In 82 707 European American individuals, a functional coding variant (rs1799971, encoding Asn40Asp) in OPRM1 (μ-opioid receptor gene, the main biological target for opioid drugs; OMIM 600018) reached genome-wide significance (G allele: β = -0.066 [SE = 0.012]; P = 1.51 × 10-8). The finding was replicated in 2 independent samples. Single-nucleotide polymorphism-based heritability of OUD was 11.3% (SE = 1.8%). Opioid use disorder was genetically correlated with 83 traits, including multiple substance use traits, psychiatric illnesses, cognitive performance, and others. Mendelian randomization analysis revealed the following associations with OUD: risk of tobacco smoking, depression, neuroticism, worry neuroticism subcluster, and cognitive performance. No genome-wide significant association was detected for African American individuals or in transpopulation meta-analysis. Conclusions and Relevance: This genome-wide meta-analysis identified a significant association of OUD with an OPRM1 variant, which was replicated in 2 independent samples. Post-genome-wide association study analysis revealed associated pleiotropic characteristics. Recruitment of additional individuals with OUD for future studies-especially those of non-European ancestry-is a crucial next step in identifying additional significant risk loci
- …