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Abstract
Stimulant dependence is heritable, but specific genetic factors underlying the trait have not been identified. A
genome-wide association study for stimulant dependence was performed in a discovery cohort of African- (AA) and
European-ancestry (EA) subjects ascertained for genetic studies of alcohol, opioid, and cocaine use disorders. The
sample comprised individuals with DSM-IV stimulant dependence (393 EA cases, 5288 EA controls; 155 AA cases, 5603
AA controls). An independent cohort from the family-based Collaborative Study on the Genetics of Alcoholism (532 EA
cases, 7635 EA controls; 53 AA cases, AA 3352 controls) was used for replication. One variant in SLC25A16 (rs2394476,
p= 3.42 × 10−10, odds ratio [OR]= 3.70) was GWS in AAs. Four other loci showed suggestive evidence, including
KCNA4 in AAs (rs11500237, p= 2.99 × 10−7, OR= 2.31) which encodes one of the potassium voltage-gated channel
protein that has been linked to several other substance use disorders, and CPVL in the combined population groups
(rs1176440, p= 3.05 × 10−7, OR= 1.35), whose expression was previously shown to be upregulated in the prefrontal
cortex from users of cocaine, cannabis, and phencyclidine. Analysis of the top GWAS signals revealed a significant
enrichment with nicotinic acetylcholine receptor genes (adjusted p= 0.04) and significant pleiotropy between
stimulant dependence and alcohol dependence in EAs (padj= 3.6 × 10−3), an anxiety disorder in EAs (padj= 2.1 ×
10−4), and ADHD in both AAs (padj= 3.0 × 10−33) and EAs (padj= 6.7 × 10−35). Our results implicate novel genes and
pathways as having roles in the etiology of stimulant dependence.

Introduction
Amphetamines have been used to treat a variety of

conditions including asthma, obesity, and attention-defi-
cit/hyperactivity disorder (ADHD)1. Amphetamines and
other stimulants increase alertness and physical and
mental performance and reduce drowsiness. The
mechanism by which stimulants exert these effects
appears to involve the increase in the level of dopamine
(DA) in the striatum that results from their competitive
inhibition of DA uptake, which facilitates DA release from
synaptic vesicles, and their promotion of reverse transport

of DA into the synaptic cleft2,3. In some individuals,
amphetamines induce pleasurable effects. However, mis-
use of stimulants saturates DA receptors, disrupts the
normal production of DA, and may lead to severe
pathophysiological effects, including tachycardia and
myocardial infarction, withdrawal-related outcomes such
as anxiety, depression, and psychosis3.
The misuse of amphetamines is a public health pro-

blem. Emergency room visits related to stimulant abuse
increased from 2303 in 2004 to 17,272 in 20114. In 2015,
there were ∼5.3 million non-medical users of prescription
stimulants among individuals age 12 and older in the
United States5. A meta-analysis of published neuroima-
ging data in individuals meeting DSM-IV criteria for sti-
mulant dependence showed reduced gray matter in
prefrontal cortical regions that are associated with self-
regulation and self-awareness6.
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Family and twin studies have shown that the risk of sti-
mulant use disorder is proportional to the degree of
relatedness to an affected relative1,7. The heritability of
stimulant use disorder (excluding cocaine) has been esti-
mated to be 0.40–0.428,9. Although a genome-wide asso-
ciation study (GWAS) of methamphetamine dependence
yielded no significant findings, the sample of 580 indivi-
duals was likely insufficient to detect associations with
variants of modest effect10. We performed a GWAS for
stimulant dependence in a discovery sample of 5681 indi-
viduals of European ancestry (EA) and 5758 of African
ancestry (AA) and, after testing the top-ranked findings in
an independent dataset with 3405 AA and 8185 EA indi-
viduals, identified two genome-wide significant (GWS)
associations. These results provide insight into the biolo-
gical basis of stimulant dependence.

Subjects and methods
Participants and diagnostic procedures
The discovery sample was derived from the Yale-Penn

sample, a cohort of 11,439 participants (5758 AAs and
5681 EAs) recruited through treatment centers and
advertisements for genetic studies of cocaine, opioid or
alcohol dependence11. All participants were interviewed
using the Semi-Structured Assessment for Drug Depen-
dence and Alcoholism (SSADDA)12, which we have pre-
viously shown to be reliable with respect to both
diagnoses and diagnostic criteria13,14, to derive lifetime
diagnoses for dependence on these and other substances
and other major psychiatric disorders. DSM-IV depen-
dence on stimulants (including amphetamine-related
substances) was assessed using information from the
SSADDA. Individuals who had a dependence on other
stimulants (including cocaine and caffeine) were not
considered as stimulant dependent in order to minimize
genetic heterogeneity in the outcome and detect variants
specifically relevant to dependence on amphetamines and

closely related stimulants. Additional details of participant
recruitment and assessment are reported elsewhere11,15.
After excluding participants with missing stimulant use or
basic demographic information, the remaining sample
consisted of 614 small nuclear families (1355 total parti-
cipants) and 10,084 unrelated individuals. An indepen-
dent sample consisting of 532 EA cases, 7635 EA controls,
53 AA cases, and AA 3352 controls was selected from the
Collaborative Study on the Genetics of Alcoholism
(COGA)16 for replication. Diagnoses in the COGA sample
were made using the SSAGA, a semi-structured interview
from which the SSADDA was derived17. Characteristics of
stimulant-dependent cases and controls in the discovery
and replication datasets are shown in Table 1. This study
was approved by the Institutional Review Boards at all
participating sites. Data were analyzed between Septem-
ber 2017 and October 2019.

Genotyping, imputation, quality control, and population
substructure analysis
As described previously11, specimens from participants

in the discovery sample were genotyped using one of three
genome-wide SNP arrays: the Illumina HumanOmni1-
Quad v1.0 microarray containing 988,306 autosomal
SNPs (Yale-Penn 1), the Illumina Infinium Human Core
Exome microarray containing 265,919 exonic SNPs and
approximately 240,000 tagging SNPs (Yale-Penn 2), and
the Illumina Multi-ethnic Global Array containing
1,779,819 markers representing five major populations
(Yale-Penn 3). Genotyping was performed at the Yale
Center for Genome Analysis, except for a group of
2538 samples (1784 AAs and 754 EAs) that were geno-
typed at the Center for Inherited Disease Research.
Quality control of genotype data was performed as pre-
viously described18. Briefly, individuals with a call rate <
98% and variants with minor allele frequency (MAF) < 1%
were excluded. Pairwise identity-by-decent (IBD) was

Table 1 Sample characteristics.

Stage Dataset Group African Americans European Ancestry

Female/total Age µ (SD) Female/total Age µ (SD)

Discovery Yale-Penn1 Case 32/101 47.0 (7.8) 73/169 40.5 (10.0)

Control 1427/2986 40.8 (9.0) 603/1394 37.7 (11.0)

Yale-Penn2 Case 10/38 48.1 (10.9) 48/136 42.0 (13.2)

Control 684/1617 40.6 (11.0) 615/1461 39.1 (13.0)

Yale-Penn3 Case 6/16 49.8 (11.0) 20/88 41.4 (11.4)

Control 486/1000 40.5 (11.4) 1,219/2423 40.5 (14.6)

Replication COGA Case 21/53 40.6 (8.5) 222/532 36.8 (9.3)

Control 1783/3299 32.7 (12.2) 3798/7103 36.8 (15.2)
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calculated with PLINK19 to determine genetic relatedness
among individuals in the sample and individuals with a
pairwise IBD estimate > 25% were assigned to the same
family. Self-reported males with X chromosome hetero-
zygosity > 20% and self-reported females with X chro-
mosome heterozygosity < 20% were excluded. Population
substructure in the entire sample was evaluated by ana-
lysis of the principal components (PCs) of ancestry using
Eigensoft20 and the multi-ethnic 1000 Genome reference
panel for comparison. Individuals were classified as AA or
EA according to the reference panel population to which
they were more closely matched. SNP genotype imputa-
tion was performed separately in AAs and EAs using the
March 2012 1000 Genomes reference panel (1000 Gen-
omes Project, 2012; http://www.1000genomes.org/) and
Minimac321 implemented on the Michigan imputation
server (https://imputationserver.sph.umich.edu). Geno-
typing, QC, and imputation procedures for the COGA
dataset are described elsewhere22. Analysis was limited
to SNPs with an imputation quality score > 0.8 and
MAF > 0.03.

Genome-wide association analyses
Association of the DSM-IV diagnosis of stimulant

dependence was evaluated using logistic regression
models that were solved with generalized estimating
equations to correct for correlations among related
individuals. Models included covariates for age, sex, and
the first five PCs. Association tests were performed
separately within each population group and within each
genotyping platform to account for batch effects. The
association test results were corrected for genomic
inflation (λ) and combined across population and batch
groups via inverse variance meta-analysis implemented
in the program METAL23. We ignored results for var-
iants whose heterogeneity p-values from the meta-
analysis were less than 1.4 × 10−6 in AAs or 3.3 × 10−9

in EAs (different thresholds were used given the sample
size difference across populations) implying incon-
sistency across datasets. The p -value threshold was set
at 5.0 × 10−8 for GWS. A suggestive significance level
was set at 5.0 × 10−6, and replication was sought for
variants that passed this threshold. Association testing in
the replication dataset was performed using the same
covariates as in the discovery sample in regression
models implemented in geepack (https://cran.r-project.
org/web/). Results for the discovery and replication
datasets were combined using the inverse variance meta-
analysis as described above.

Assessment of SNP effects on gene expression
SNPs that surpassed the significance threshold of p=

1.0 × 10−6 in the GWAS discovery dataset were assessed
for their potential to affect gene expression using the

information in the Genotype-Tissue Expression Portal
(GTEx)24 (http://www.gtexportal.org) and Braineac25

(http://www.braineac.org/). GTEx links SNP genotype to
gene expression in multiple human tissues, whereas
Braineac incorporates expression data for multiple brain
regions derived from 130 individuals from the UK Brain
Expression Consortium (UKBEC) and contains
expression-altering SNP information for each brain
region.

Pleiotropy analyses
Because > 70% of persons with stimulant use disorder

have comorbid alcohol or cannabis use disorders and
more than one-third have anxiety disorder26, and
amphetamine-related medications are used to treat
attention deficit hyperactivity disorder (ADHD)27, we
investigated the possibility of pleiotropy using GWAS
summary statistics that were available in 2017 from the
Psychiatric Genetics Consortium on LD Hub28 for
ADHD (in a predominantly EA sample)29, alcohol
dependence (in a trans-ancestral sample)30, and anxiety
disorder (in an EA sample)31. Pleiotropy analyses were
performed using a mixture model implemented in the
Genetic Analysis Incorporating Pleiotropy and Annota-
tion (GPA) software32. Parameters were estimated using
GPA’s efficient expectation-maximization algorithm,
wherein associated SNPs were modeled with a β [α, 1]
distribution and unassociated SNPs with a uniform [0, 1]
distribution. A likelihood ratio test was applied to
determine the significance of pleiotropy between dis-
orders based on an evaluation of the entire genome as
well as individual SNPs.

Pathway analysis
Biological pathways were evaluated using the Enrichr

software33 (http://amp.pharm.mssm.edu/Enrichr/),
which considers gene sets derived from population-
specific GWAS results and canonical pathways culled
from multiple sources (e.g., membership of genes in
pathway databases34, protein-protein interaction net-
work data extracted from literature, disease data-
bases35,36, gene expression profiling24,37. Variants were
mapped to genes using SNPEff38 and the smallest
p -value within each gene was corrected by the effective
number of SNPs tested in that gene according to the
Li and Ji method39. We set the corrected significance
threshold at p < 0.001 in order to obtain 200–300 genes
for subsequent pathway analyses. This yielded a list of
235 genes from AAs and EAs. Enrichr uses Fisher’s exact
test to calculate an enrichment score. The test for each
pathway was computed by comparing its observed rank
with the expected rank using multiple random input
gene lists.
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Results
GWAS findings
There was minor p-value inflation in the AA (λ= 1.02),

EA (λ= 1.038), and combined (λ= 1.041) discovery
samples (Fig. S1). Several variants showed evidence for
association at the genome-wide or suggestive significance
level (Table 2, Fig. S2). In AAs, the association with SNP
rs2394476 located between LRP1B (443 kb upstream) and
KYNU (93 kb upstream) surpassed the genome-wide
cutoff (p= 1.19 × 10−8, OR= 2.12) and had the same
effect direction in all subsets of the data (Fig. 1). GWS
evidence was also obtained with SLC25A16 SNP
rs2394476 (p= 3.42 × 10−10, OR= 3.7, Fig. 2). Variants in
two other regions were highly significant (p < 1.0 × 10−5)
in AAs: rs11500237 located 37 kb from KCNA4 (p=
3.21 × 10−7, OR= 2.56, Fig. 3) and rs116441240 located in
GNAO1 (p= 5.51 × 10−6, OR= 2.73, Fig. 4). No SNPs
approached the GWS level in EAs. There was strong
evidence for association with intronic CPVL variant
rs11764430 in both AAs (p= 1.38 × 10−4) and EAs
(p= 4.64 × 10−4), and this SNP was nearly GWS in the
combined AA and EA discovery datasets (p= 3.10 × 10−7,
OR= 1.60, Fig. 5).
In the discovery GWAS, 59 SNPs (41 in AAs, 16 in EAs,

and 2 in the meta-analysis) surpassed the suggestive
threshold (p < 5.0 × 10−6) and were tested in the replica-
tion phase (Table S1). Results for the GWS SLC25A16
SNP in the replication sample were unavailable due to a
very small minor allele count. The finding with the
GNAO1 SNP that was nearly GWS in the discovery
sample was replicated (p= 0.0065) and nearly GWS in the
combined sample (p= 1.09 × 10−7, OR= 2.66, Table 2).
In contrast, the association with the LRP1B-KYNU SNP
that was GWS in the discovery sample was not confirmed
in the replication sample but was still highly significant in
the combined sample (p= 3.13 × 10−7). The associations
with the KCNA4 and CPLV SNPs were slightly more
significant when combined with the replication datasets
(p= 2.99 × 10−7 and p= 3.05 × 10−7, respectively), noting
that the CPVL SNP was significant in the AA replication
sample (p= 0.0024) and the effect direction was the same
across all eight datasets. Two SNPs in Table 2 had sig-
nificant eQTL effects in GTEx: rs11500237 on chromo-
some 11 near KCNA4 is a significant eQTL for ADP
ribosylation factor like GTPase 14 effector protein
(ARL14EP) in prostate tissue (p= 2.3 × 10−6), and
rs11764430 in CVPL significantly alters the expression of
two uncharacterized transcripts (p= 8.3 × 10−7, p= 3.6 ×
10−6).
In light of the potentially shared physiological pathways

between nicotinic receptors and methamphetamine, we
re-analyzed the discovery GWAS data including the
Fagerstrom Test of Nicotine Dependence (FTND) score
as a covariate in the regression model. No additional

significant associations with stimulant dependence were
identified, however, nor did the top findings change
meaningfully.

Genetic correlation of stimulant dependence with other
psychiatric disorders
Table 3 shows that in AAs, stimulant dependence was

significantly but modestly genetically correlated with
alcohol dependence (r2= 0.11, p= 8.0 × 10−16), ADHD
(r2= 0.05, p= 3.5 × 10−5), and anxiety disorder (r2= 0.03,
p= 9.2 × 10−3). In EAs, the correlation with both alcohol
dependence and ADHD was nearly double the magnitude
and substantially more significant (r2= 0.20, p= 7.2 ×
10−55 and r2= 0.10, p= 1.5 × 10−14, respectively) than in
AAs; these differences could have been due to the
ancestry of the reference GWAS sample. The pleiotropy
analysis showed that the variants associated with stimu-
lant dependence also affected the risk of alcohol depen-
dence (adjusted p= 3.6 × 10−3) and anxiety (adjusted p=
2.1 × 10−4) in EAs but not AAs. Although pleiotropy was
observed for stimulant dependence and ADHD in both
AAs (adjusted p= 3.0 × 10−33) and EAs (adjusted p=
6.7 × 10−35), no individual variants showed significant
pleiotropic effects on stimulant dependence and any of
the other disorders after multiple testing correction.

Pathway analyses
After correction for multiple testing, analyses that were

seeded with the 235 top-ranked genes (p < 0.001) identi-
fied in the GWAS revealed nicotinic acetylcholine
receptor activity (nAChR) as the only significant pathway
(adjusted p= 3.6 × 10−2). Among the genes in this path-
way, CHRNA3, CHRNB4, and CHRNA5 contained SNPs
that were associated with stimulant dependence in the
combined population (Table 4).

Discussion
To our knowledge, this is the first study to report a

GWS association for dependence on stimulants other
than cocaine. We identified a SNP at SLC25A16 that was
significantly associated with the trait in AAs. Near-GWS
associations were also identified in AAs with SNPs in
GNAO1, between LRP1B and KYNU, and near KCNA4.
A CPVL SNP was also nearly GWS with evidence in both
AAs and EAs. We also identified significant enrichment
among suggestively associated SNPs for genes in the
nicotinic acetylcholine receptor activity pathway and a
genetic underpinning for stimulant dependence shared
with ADHD and alcohol dependence.
Several of the top-ranked variants are mapped to loci

that were not previously implicated in substance use and
other psychiatric disorders. KCNA4 encodes a potassium
voltage-gated channel protein. Potassium voltage-gated
channels have been implicated in opioid dependence18,
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the long-acting narcotic analgesic narcotic l-alpha-
acetylmethadol40, and alcohol-preferring rats treated
with lamotrigine41. Mutations in GNAO1, which encodes
the alpha subunit of the G-alpha heterotrimeric G-

protein signal-transducing complex, cause early-onset
epileptic encephalopathy and severe developmental
delay42–44. GNAO1 expression is upregulated in a mouse
model of morphine dependence, and the knock-down of

Fig. 1 Association of stimulant dependence with SNPs located between LRP1B and KYNU in the African American discovery sample. SNPs
are color-coded according to the correlation coefficient (r2) in the 1000 Genomes African reference panel with the top-ranked SNP, rs6721393.
Rs6721393 was nearly genome-wide significant (P= 3.13 × 10−7) after meta-analysis with the replication sample.

Fig. 2 Association of stimulant dependence with SNPs located in the SLC25A16 region in the African American discovery sample. SNPs are
color-coded according to the correlation coefficient (r2) in the 1000 Genomes African reference panel with the top-ranked SNP, rs2394476. Rs2394476
was genome-wide significant (P= 1.22 × 10−9) after meta-analysis with the replication sample.

Fig. 3 Association of stimulant dependence with SNPs located in the KCNA4 region in the African American discovery sample. SNPs are
color-coded according to the correlation coefficient (r2) in the 1000 Genomes African reference panel with the top-ranked SNP, rs11500237 located
93 kb upstream of KCNA4. Rs11500237 was nearly genome-wide significant (P= 2.99 × 10−7) after meta-analysis with the replication sample.

Cox et al. Translational Psychiatry          (2021) 11:363 Page 6 of 10



the gene in these animals led to reduced opioid with-
drawal behaviors45. Although the exact function of the
enzyme encoded by CPVL has not been confirmed, its
expression is upregulated in the postmortem prefrontal
cortex from users of cocaine, cannabis, and phencycli-
dine46. The CPVL variant associated with stimulant
dependence, rs11764430, is an eQTL for CHN2, which

regulates axonal pruning via the Rac-GTPase system47

and plays a pivotal role in axon guidance. A CHN2
variant has been associated with smoking behavior48.
Significant association of a quantitative serum measure
of methylation of the CHN2 promoter with metham-
phetamine dependence was observed in a Chinese
sample49.

Fig. 4 Association of stimulant dependence with SNPs located in the GNAO1 region in the African American discovery sample. SNPs are
color-coded according to the correlation coefficient (r2) in the 1000 Genomes African reference panel with the top-ranked SNP, rs116441240.
Rs116441240 was nearly genome-wide significant (P= 1.09 × 10−7) after meta-analysis with the replication sample.

Fig. 5 Association of stimulant dependence with SNPs located in the CPVL region in the combined African American and European
ancestry discovery sample. SNPs are color-coded according to the correlation coefficient (r2) in the 1000 Genomes combined European and
African reference panels with the top-ranked SNP, rs116441240. Rs116441240 was nearly genome-wide significant (P= 3.05 × 10−7) after meta-
analysis with the replication sample.

Table 3 Genetic correlation (rg) and pleiotropy between stimulant dependence and other psychiatric disorders by
population group.

Trait African American European Ancestry

rg Correlation p-value Pleiotropy padj rg Correlation

p-value

Pleiotropy padj

Alcohol dependence 0.11 8.0E−16 1.1E−01 0.20 7.2E−55 3.6E−03

ADHD 0.053 3.5E−05 3.0E−33 0.10 1.5E−14 6.7E−35

Anxiety 0.033 9.2E−03 8.9E−01 −0.002 8.8E−01 2.1E−04
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The role of SLC25A16 in stimulant dependence is
unclear. This gene encodes a transporter of dephospho-
coenzyme A (CoA) across the inner mitochondrial
membrane50. Interestingly, kynureninase, the enzyme
encoded by one of the other top-ranked loci in this study
(KYNU), catalyzes the cleavage of kynurenine. Kynur-
enines may play a role in schizophrenia51 and one of the
kynurenine metabolites, pantethine, is a precursor in the
formation of CoA52, Thus, our genetic findings suggest a
potential involvement of CoA metabolism in stimulant
dependence. This idea is supported by a metabolomics
study pointing to an increased energy demand caused by
amphetamine and a commensurate increase in the num-
ber of fatty acids53. Fatty acid catabolism produces energy
(adenosine triphosphate, ATP) by mitochondrial beta-
oxidation yielding acetyl-CoA.
The nAChR system is part of the brain reward circuitry

that mediates the rewarding effect of amphetamine drugs
by facilitating the release of dopamine54,55, and plays a key
role in drug self-administration56. Repeated exposure to
methamphetamine inhibited the corticostriatal release of
dopamine similar to the classic nAChR agonist nicotine, an
effect reversed by methamphetamine re-administration57.
The CHRNA3-CHRNA5-CHRNB4 gene cluster of nAChRs
has been associated consistently with nicotine depen-
dence17 and multiple smoking behaviors58,59.
Our pleiotropy analysis showed genetic overlap between

stimulant dependence and alcohol use disorder, anxiety,
and ADHD. Stimulants are widely used as a treatment for
ADHD18, however there is disagreement about whether
prescribing amphetamine for ADHD increases the risk of
substance abuse in adulthood60–62. Studies of an ances-
trally diverse set of cohorts (Thai, Malaysian, American,
Chinese, and Australian)25,63–67 have demonstrated high
comorbidity between psychiatric disorders including
major depressive disorder26,64, anxiety disorder26,65 and
alcohol use disorder26,65 in amphetamine-informative

cohorts. It is not surprising that in our study individual
variants associated with stimulant dependence also affec-
ted the risk of alcohol dependence and anxiety in EAs but
not AAs because the GWAS summary data for these other
disorders were derived primarily from EA cohorts.
Our study has several limitations. First, although all of

the most significant variants are supported by sur-
rounding SNPs, SNPs located at the association peak for
several of the top loci are located in intergenic regions
for which there is little evidence of a functional impact.
Second, a high proportion of stimulant-dependent cases
in the discovery and replication cohorts are dependent
on other substances, so our results might not generalize
to all individuals with amphetamine-related stimulant
dependence. Third, the inclusion of both exposed and
unexposed controls in this study may have reduced
power due to misclassification; i.e. come controls might
carry significant risk for stimulant dependence but were
not exposed. Fourth, the number of stimulant-dependent
cases is small for a GWAS and, not surprisingly, several
associated variants have a large effect size. This is par-
ticularly true of the AA sample. Fifth, it is possible that
some of our results were diluted because the interview
instrument does not distinguish the use of metham-
phetamine from several other stimulant drugs. Finally,
the significant enrichment for nicotinic acetylcholine
receptor genes in the pathway analysis may be the result
of either comorbidity and/or pleiotropy with nicotine
dependence. To explore this possibility, we conducted a
secondary association analysis for the top-ranked results
using models that included a covariate for nicotinic
dependence severity measured by the number of DSM-
IV criteria endorsed. The results were not meaningfully
different from those of the primary analyses.
We found an association of stimulant dependence with

novel risk genes and genes that were previously identified
as risk factors for other addiction traits. Post-GWAS
eQTL and pathway analyses provide insight into the
biological mechanisms that contribute to amphetamine
dependence. In addition, our results suggest the presence
of a shared genetic basis for stimulant dependence and
other psychiatric traits.
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