96 research outputs found

    A Forgotten or Ignored Ordinance? A Critical Appraisal of the Inheritance (Provision for Family and Dependants) Ordinance

    Get PDF
    published_or_final_versio

    Appropriation Set Aside: 'A Short Point of Law - But An Interesting One'

    Get PDF
    Analysispublished_or_final_versio

    Aut ovis aut capra: personal representative or trustee?

    Get PDF
    published_or_final_versio

    Rectification: Correcting Mistakes in Wills

    Get PDF
    This article examines the court's jurisdiction in section 23A of the Wills Ordinance to order that a will be rectified so as to carry out the testator's intentions with contrasting reference to the general equitable remedy of rectification. The types of mistake that can be rectified are analysed in the light of the section's providence and of the relevant case law on the analogous English provision. The important practical impact of the jurisdiction on actions against solicitors for negligence in relation to the drafting of wills is illustrated by showing how an initial application for rectification may be required to mitigate any tortious liability arising out of an alleged mistake in a will.published_or_final_versio

    Association of CAG repeat loci on chromosome 22 with schizophrenia and bipolar disorder

    Get PDF
    Chromosome 22 has been implicated in schizophrenia and bipolar disorder in a number of linkage, association and cytogenetic studies. Recent evidence has also implicated CAG repeat tract expansion in these diseases. In order to explore the involvement of CAG repeats on chromosome 22 in these diseases, we have created an integrated map of all CAG repeats 5 on this chromosome together with microsatellite markers associated with these diseases using the recently completed nucleotide sequence of chromosome 22. Of the 52 CAG repeat loci identified in this manner, four of the longest repeat stretches in regions previously implicated by linkage analyses were chosen for further study. Three of the four repeat containing loci, were found in the coding region with the CAG repeats coding for glutamine and were expressed in the brain. All the loci studied showed varying degrees of polymorphism with one of the loci exhibiting two alleles of 7 and 8 CAG repeats. The 8-repeat allele at this locus was significantly overrepresented in both schizophrenia and bipolar patient groups when compared to ethnically matched controls, while alleles at the other three loci did not show any such difference. The repeat lies within a gene which shows homology to an androgen receptor related apoptosis protein in rat. We have also identified other candidate genes in the vicinity of this locus. Our results suggest that the repeats within this gene or other genes in the vicinity of this locus are likely to be implicated in bipolar disorder and schizophrenia

    The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)

    Get PDF
    Long-term datasets of integrated environmental variables, co-located together, are relatively rare. The UK Environmental Change Network (ECN) was launched in 1992 and provides the UK with its only long-term integrated environmental monitoring and research network for the assessment of the causes and consequences of environmental change. Measurements, covering a wide range of physical, chemical, and biological “driver” and “response” variables are made in close proximity at ECN terrestrial sites using protocols incorporating standard quality control procedures. This paper describes the datasets (there are 19 published ECN datasets) for these co-located measurements, containing over 20 years of data (1993–2015). The data and supporting documentation are freely available from the NERC Environmental Information Data Centre under the terms of the Open Government Licence (see paper for DOIs)

    First Trimester Prediction of Uteroplacental Disease- Results of the Prospective Handle Study

    Get PDF
    To assess the ability of non-invasive cardiac output monitoring (NICOM), a novel method of non-invasive maternal hemodynamic assessment using bioreactance, in combination with first trimester biomarkers to predict the evolution of gestational hypertension (GH), pre-eclampsia (PE) and normotensive fetal growth restriction (FGR)

    Bi-Directional Effect of Cholecystokinin Receptor-2 Overexpression on Stress-Triggered Fear Memory and Anxiety in the Mouse

    Get PDF
    Fear, an emotional response of animals to environmental stress/threats, plays an important role in initiating and driving adaptive response, by which the homeostasis in the body is maintained. Overwhelming/uncontrollable fear, however, represents a core symptom of anxiety disorders, and may disturb the homeostasis. Because to recall or imagine certain cue(s) of stress/threats is a compulsory inducer for the expression of anxiety, it is generally believed that the pathogenesis of anxiety is associated with higher attention (acquisition) selectively to stress or mal-enhanced fear memory, despite that the actual relationship between fear memory and anxiety is not yet really established. In this study, inducible forebrain-specific cholecystokinin receptor-2 transgenic (IF-CCKR-2 tg) mice, different stress paradigms, batteries of behavioral tests, and biochemical assays were used to evaluate how different CCKergic activities drive fear behavior and hormonal reaction in response to stresses with different intensities. We found that in IF-CCKR-2 tg mice, contextual fear was impaired following 1 trial of footshock, while overall fear behavior was enhanced following 36 trials of footshock, compared to their littermate controls. In contrast to a standard Yerkes-Dodson (inverted-U shaped) stress-fear relationship in control mice, a linearized stress-fear curve was observed in CCKR-2 tg mice following gradient stresses. Moreover, compared to 1 trial, 36 trials of footshock in these transgenic mice enhanced anxiety-like behavior in other behavioral tests, impaired spatial and recognition memories, and prolonged the activation of adrenocorticotropic hormone (ACTH) and glucocorticoids (CORT) following new acute stress. Taken together, these results indicate that stress may trigger two distinctive neurobehavioral systems, depending on both of the intensity of stress and the CCKergic tone in the brain. A “threshold theory” for this two-behavior system has been suggested

    Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms

    Get PDF
    Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug—yohimbine, and an anti-anxiety drug—diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain–blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders—notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond
    corecore